作成者 |
|
|
本文言語 |
|
出版者 |
|
|
発行日 |
|
収録物名 |
|
出版タイプ |
|
アクセス権 |
|
関連DOI |
|
関連DOI |
|
|
関連URI |
|
|
関連ISBN |
|
関連HDL |
|
関連情報 |
|
|
|
概要 |
We consider matrices $ M $ with entries $ m_ij = m(lambda_i, lambda_i ) $ where $ lambda_1, cdots, lambda_n $ are positive numbers and $ m $ is a binary mean dominated by the geometric mean, and matri...ces $ W $ with entries $ omega_ij = 1/m (lambda_i, lambda_i ) $ where $ m $ is a binary mean that dominates the geometric mean. We show that these matrices are infinitely divisible for several much-studied classes of means.続きを見る
|