<会議発表論文>
Fitness Landscape Approximation by Adaptive Support Vector Regression with Opposition-Based Learning

作成者
本文言語
出版者
発行日
雑誌名
開始ページ
終了ページ
会議情報
出版タイプ
アクセス権
概要 We propose a method for approximating a fitness landscape using adaptive support vector regression (SVR) with opposition based learning (OBL) to enhance the evolutionary search. This method tries to resolve the complexity of the fitness landscape in the original search space by designing a suitable kernel function with an adaptive parameter tuned by OBL, This kernel projects the original search space into a higher dimensional search space with a different topological structure. The elite is obtained from the approximated fitness landscape, using the adaptive SVR to accelerate the evolutionary computation (EC) search, and the individual with the worst fitness is replaced. The merits of the proposed method are evaluated by comparing it with the fitness landscape approximated in the original, in a lower and in a higher dimensional search space.

本文情報を非表示

SMC2013 pdf 883 KB 5  

詳細

PISSN
レコードID
関連情報
主題
登録日 2018.02.07
更新日 2018.02.15