作成者 |
|
|
|
本文言語 |
|
出版者 |
|
|
発行日 |
|
収録物名 |
|
巻 |
|
号 |
|
開始ページ |
|
終了ページ |
|
出版タイプ |
|
アクセス権 |
|
JaLC DOI |
|
関連DOI |
|
|
|
関連URI |
|
|
|
関連情報 |
|
|
|
概要 |
Experiments were conducted to obtain row-by-row heat transfer data during condensation of downward-flowing zeotropic refrigerant mixture HGFC-123/HFC-134a on a 3×15 (columns×rows) staggered bundle of ...horizontal low-finned tubes. The vapor temperature and the HFC-134a mass fraction at the tube bundle inlet were maintained at about 50℃ and 9%, respectively. The refrigerant mass velocity ranged from 9 to 34kg/m^2s, and the condensation temperature difference from 3 to 12K. The vapor phase mass transfer coefficient was obtained from the heat transfer data by subtracting the thermal resistance of the condensate film. The heat transfer coefficient and the mass transfer coefficient decreased significantly with decreasing mass velocity. These values first increased with the row number up to the third (or second) row, then decreased monotonically with further increasing row number, and then increased again at the last row. The mass transfer coefficient increased with condensation temperature difference, which was due to the effect of suction associated with condensation. On the basis of the analogy between heat and mass transfer, a dimensionless correlation of the mass transfer coefficient for the 4th to 14th rows was developed.続きを見る
|