<学術雑誌論文>
The XPO7-NPAT axis represents key vulnerabilities in TP53-mutated acute myeloid leukemia

作成者
本文言語
出版者
発行日
収録物名
出版タイプ
アクセス権
権利関係
権利関係
関連DOI
関連URI
関連HDL
概要 Acute myeloid leukemia (AML) with TP53 mutations is almost universally refractory to chemotherapy, molecular-targeted therapies, and hematopoietic stem cell transplantation, leading to dismal clinical... outcomes. The lack of effective treatments underscores the urgent need for novel therapeutic strategies. Using genome-wide CRISPR/Cas9 dropout screens in isogenic Trp53-wild-type (WT) and knockout (KO) mouse AML models, combined with transcriptomic and proteomic analyses of mouse and human AML samples, we identify the XPO7 (exportin 7)–NPAT (nuclear protein, coactivator of histone transcription) pathway as essential for TP53-mutated AML cell survival. In TP53-WT AML, XPO7 functions as a tumor suppressor by regulating nuclear abundance of p53 protein, particularly when basal levels of functional p53 are high. However, in TP53-mutated AML, XPO7 drives leukemia proliferation by retaining NPAT, an XPO7-associated protein predominantly expressed in TP53-mutated AML, within the nucleus. NPAT depletion induces genome-wide histone loss, compromises genomic integrity, and triggers replication catastrophe in TP53-mutated AML cells. Notably, analysis of publicly available AML datasets, primary AML samples, and single-cell intra-patient mRNA profiles further reveals elevated XPO7 and NPAT expression in TP53-mutated AML. Finally, we validate the XPO7-NPAT pathway as a critical driver of leukemia progression in vivo using patient-derived xenograft (PDX) models of TP53-WT and TP53-mutant AML. Our study delineates key molecular mechanisms underlying TP53-mutated AML pathogenesis and identifies the XPO7-NPAT axis as a critical vulnerability in this refractory leukemia subtype.続きを見る

本文ファイル

pdf 7392676 pdf 18.9 MB 2  

詳細

PISSN
EISSN
NCID
レコードID
主題
タイプ
助成情報
登録日 2025.11.14
更新日 2025.11.14