作成者 |
|
|
|
|
本文言語 |
|
出版者 |
|
発行日 |
|
収録物名 |
|
巻 |
|
号 |
|
開始ページ |
|
出版タイプ |
|
アクセス権 |
|
権利関係 |
|
権利関係 |
|
関連DOI |
|
関連URI |
|
関連HDL |
|
概要 |
Blast-induced ground vibrations present substantial safety and environmental hazards in surface mining operations. This study proposes and evaluates the Sparrow Search Algorithm-optimized ANN (SSA-ANN...) against artificial neural network (ANN), Genetic Algorithm-optimized ANN (GA-ANN), and empirical formula (USBM) to estimate peak particle velocity (PPV). In addition, the input parameters include key blasting design parameters and rock mass features (GSI and UCS). The SSA-ANN demonstrated superior prediction accuracy, attaining an average R2 of 0.51 using bootstrap validation, surpassing GA-ANN (0.41) and standard ANN (0.26). Furthermore, the incorporation of GSI enhanced the model’s geotechnical sensitivity. These results illustrate that the application of SSA-ANN alongside comprehensive rock mass characteristics can substantially decrease uncertainty in PPV prediction, therefore enhancing safety within the blast area and improving vibration control methods in blasting operations.続きを見る
|