<学術雑誌論文>
Development of Models to Predict Flexural Strength of 3D Printed Specimens in Terms of Input Parameters

作成者
本文言語
出版者
発行日
収録物名
開始ページ
終了ページ
出版タイプ
アクセス権
Crossref DOI
権利関係
概要 In the present work, models have been generated for prediction of flexural strength, in terms of four input parameters i.e. temperature of the extruder, density of the infill, printing speed, and laye...r height, for 3D printed samples prepared using the Fused Deposition Modelling (FDM) technique. The filament used for printing the specimen is that of Poly Lactic Acid (PLA). Regression and Artificial Neural Networks (ANN) have been used to build mathematical models by utilizing the experimental data obtained for Taguchi L16 Orthogonal array. Value of Rsquare for regression is 86.92. Additionally, the percentage deviation between experimental values and model predicted values have been calculated as per ANN model and the variation is 4.06 percent. Hence ANN model can be used for determination of flexural strength for any combination of four input parameters under study.続きを見る

本文ファイル

pdf p1292-1298 pdf 725 KB 181  

詳細

PISSN
EISSN
レコードID
査読有無
主題
登録日 2024.07.12
更新日 2024.07.16

この資料を見た人はこんな資料も見ています