<学術雑誌論文>
A Numerical Evaluation of an Infill Sampling Criterion in Artificial Neural Network-Based Optimization

作成者
本文言語
出版者
発行日
収録物名
開始ページ
終了ページ
出版タイプ
アクセス権
権利関係
関連DOI
関連URI
関連HDL
概要 Surrogate models can be used to replace expensive computer simulations for the purposes of optimization. In this paper, we propose an optimization approach based on artificial neural network (ANN) sur...rogate models and infill sampling criteria (ISC) strategy to evaluate design variables. The criterion for infill sample selection is a function which aims at identify design that offer potential improvement. We employ four widely used analytical benchmark problems to test the proposed approach. Our results show that a more accurate surrogate model obtained with fewer points is obtained when one includes the infill sample criterion to an ANN-based optimization.続きを見る

本文ファイル

pdf 7157420 pdf 3.00 MB 108  

詳細

PISSN
レコードID
主題
助成情報
登録日 2023.11.17
更新日 2024.12.02

この資料を見た人はこんな資料も見ています