作成者 |
|
|
|
|
本文言語 |
|
出版者 |
|
発行日 |
|
収録物名 |
|
巻 |
|
号 |
|
開始ページ |
|
終了ページ |
|
出版タイプ |
|
アクセス権 |
|
権利関係 |
|
|
関連DOI |
|
関連URI |
|
関連HDL |
|
概要 |
This paper focuses on the stability analysis and support design of the coal mine tunnel excavated in weak rock mass in an Indonesian underground coal mine through numerical simulations using the FLAC3...D software. The PT Gerbang Daya Mandiri (GDM) coal mine situated in Indonesia was selected as a mine site in this study. According to the results of a series of numerical simulations, the stability of the mine tunnel decreases by increasing the depth and stress ratio. Ground control problems, for example falling roof, sidewall collapse, and floor heave are expected unless an appropriate support system is anticipated. Three support systems, including friction rockbolt, steel arch, and shotcrete are discussed as methods to stabilize the roof and sidewalls of the mine tunnel. From the simulated results, the steel arch is considered to be the most effective support method when compared with other support systems. The steel arch which is installed with closer space and larger cross-section delivers a better stability control to the roof and sidewalls of the mine tunnel. Although the stability of the roof and sidewalls of the mine tunnel can be maintained effectively by the steel arch support, the occurrence of floor heave is expected when the mining depth is increased. To control the floor stability of the mine tunnel, three techniques by applying cablebolt, invert-arch floor, and grooving method are therefore investigated and discussed. Based on simulated results, the heaving of the floor is well controlled after the cablebolt, invert-arch floor, and grooving methods are applied. Nevertheless, it is found that controlling the floor heave by cablebolt support could be the most suitable method comparing with other support systems in terms of the installation process, providing flat and safe working conditions of the floor, and economy. Additionally, the cablebolt with closer row space and longer length works more effectively to control the heaving problem of the floor.続きを見る
|