作成者 |
|
|
|
|
|
|
本文言語 |
|
出版者 |
|
|
発行日 |
|
収録物名 |
|
巻 |
|
開始ページ |
|
終了ページ |
|
会議情報 |
|
出版タイプ |
|
アクセス権 |
|
権利関係 |
|
関連DOI |
|
|
|
概要 |
We employ the proximal averaged Newton-type method for optimal control (PANOC) to solve obstacle avoidance problems in real time. We introduce a novel modeling framework for obstacle avoidance which a...llows us to easily account for generic, possibly nonconvex, obstacles involving polytopes, ellipsoids, semialgebraic sets and generic sets described by a set of nonlinear inequalities. PANOC is particularly well-suited for embedded applications as it involves simple steps, its implementation comes with a low memory footprint and its fast convergence meets the tight runtime requirements of fast dynamical systems one encounters in modern mechatronics and robotics. The proposed obstacle avoidance scheme is tested on a lab-scale autonomous vehicle.続きを見る
|