<journal article>
Glucosinolate Distribution in the Aerial Parts of sel1-10, a Disruption Mutant of the Sulfate Transporter SULTR1;2, in Mature Arabidopsis thaliana Plants

Creator
Language
Publisher
Date
Source Title
Vol
Issue
First Page
Publication Type
Access Rights
Rights
Rights
Related DOI
Related DOI
Related URI
Related HDL
Abstract Plants take up sulfur (S), an essential element for all organisms, as sulfate, which is mainly attributed to the function of SULTR1;2 in Arabidopsis. A disruption mutant of SULTR1;2, sel1-10, has been... characterized with phenotypes similar to plants grown under sulfur deficiency (-S). Although the effects of -S on S metabolism were well investigated in seedlings, no studies have been performed on mature Arabidopsis plants. To study further the effects of -S on S metabolism, we analyzed the accumulation and distribution of S-containing compounds in different parts of mature sel1-10 and of the wild-type (WT) plants grown under long-day conditions. While the levels of sulfate, cysteine, and glutathione were almost similar between sel1-10 and WT, levels of glucosinolates (GSLs) differed between them depending on the parts of the plant. GSLs levels in the leaves and stems were generally lower in sel1-10 than those in WT. However, sel1-10 seeds maintained similar levels of aliphatic GSLs to those in WT plants. GSL accumulation in reproductive tissues is likely to be prioritized even when sulfate supply is limited in sel1-10 for its role in S storage and plant defense.show more

Hide fulltext details.

pdf 4377815 pdf 2.02 MB 351  

Details

EISSN
Record ID
Related PubMed ID
Subject Terms
Type
Funding Information
Created Date 2021.04.09
Modified Date 2023.08.03

People who viewed this item also viewed