<journal article>
The TRPV4-AKT axis promotes oral squamous cell carcinoma cell proliferation via CaMKII activation

Creator
Language
Publisher
Date
Source Title
Vol
First Page
Last Page
Publication Type
Access Rights
Rights
Related DOI
Abstract Most human malignant tumor cells arise from epithelial tissues, which show distinctive characteristics, such as polarization, cell-to-cell contact between neighboring cells and anchoring to a basement... membrane. When tumor cells invaginate into the stroma, the cells are exposed to extracellular environments, including the extracellular matrix (ECM). Increased ECM stiffness has been reported to promote cellular biological activities, such as excessive cellular growth and enhanced migration capability. Therefore, tumorous ECM stiffness is not only an important clinical tumor feature but also plays a pivotal role in tumor cell behavior. Transient receptor potential vanilloid 4 (TRPV4), a Ca2+-permeable nonselective cation channel, has been reported to be mechano-sensitive and to regulate tumorigenesis, but the underlying molecular mechanism in tumorigenesis remains unclear. The function of TRPV4 in oral squamous cell carcinoma (OSCC) is also unknown. The current study was conducted to investigate whether or not TRPV4 might be involved in OSCC tumorigenesis. TRPV4 mRNA levels were elevated in OSCC cell lines compared to normal oral epithelial cells, and its expression was required for TRPV4 agonist-dependent Ca2+ entry. TRPV4-depleted tumor cells exhibited decreased proliferation capabilities in three-dimensional culture but not in a low attachment plastic dish. A xenograft tumor model demonstrated that TRPV4 expression was involved in cancer cell proliferation in vivo. Furthermore, loss-of-function experiments using siRNA or an inhibitor revealed that the TRPV4 expression was required for CaMKII-mediated AKT activation. Immunohistochemical analyses of tissue specimens obtained from 36 OSCC patients 4 showed that TRPV4 was weakly observed in non-tumor regions but was strongly expressed in tumor lesions at high frequencies where phosphorylated AKT expression was frequently detected. These results suggest that the TRPV4/CaMKII/AKT axis, which might be activated by extracellular environments, promotes OSCC tumor cell growth.show more

Hide fulltext details.

pdf 4123614 pdf 10.7 MB 505  

Details

PISSN
EISSN
Record ID
Related PubMed ID
Subject Terms
Funding Information
Created Date 2020.12.11
Modified Date 2024.04.16

People who viewed this item also viewed