| 作成者 |
|
|
|
| 本文言語 |
|
| 出版者 |
|
|
|
| 発行日 |
|
| 収録物名 |
|
| 出版タイプ |
|
| アクセス権 |
|
| 関連DOI |
|
| 関連DOI |
|
|
|
| 関連URI |
|
|
|
| 関連ISBN |
|
| 関連HDL |
|
| 関連情報 |
|
|
|
|
|
| 概要 |
We consider matrices $ M $ with entries $ m_ij = m(lambda_i, lambda_i ) $ where $ lambda_1, cdots, lambda_n $ are positive numbers and $ m $ is a binary mean dominated by the geometric mean, and matri...ces $ W $ with entries $ omega_ij = 1/m (lambda_i, lambda_i ) $ where $ m $ is a binary mean that dominates the geometric mean. We show that these matrices are infinitely divisible for several much-studied classes of means.続きを見る
|