<紀要論文>
COSINE HIGHER-ORDER EULER NUMBER CONGRUENCES AND DIRICHLET L-FUNCTION VALUES

作成者
本文言語
出版者
発行日
収録物名
開始ページ
終了ページ
出版タイプ
アクセス権
関連DOI
関連URI
関連HDL
概要 In this paper we obtain the residue modulo a prime power of cosine higher-order Euler numbers H^〈(k)〉_〈2n〉(m) in terms of the linear combination of the Dirichlet L-function values L(s, χ) at positive ...integral arguments s or of generalized Bernoulli numbers. Our results are restricted to the equal parity case ; i.e. s and χ are of the same parity. In the process, we employ Yamamoto’s results on finite expressions in terms of Dirichlet L-function values for short interval character sums and in this sense our treatment is decisive, i.e. any ad-hoc transformation of short interval sums. The results obtained not only generalize the previous results pertaining to the congruences modulo a prime power of the class numbers as the special case of s=1 in terms of Euler numbers but also closes the chapter on possible similar research.続きを見る

詳細

PISSN
NCID
レコードID
査読有無
主題
助成情報
登録日 2018.06.27
更新日 2019.07.02

この資料を見た人はこんな資料も見ています