作成者 |
|
|
|
本文言語 |
|
出版者 |
|
|
発行日 |
|
収録物名 |
|
巻 |
|
号 |
|
開始ページ |
|
終了ページ |
|
出版タイプ |
|
アクセス権 |
|
関連DOI |
|
関連URI |
|
関連HDL |
|
概要 |
In this paper we obtain the residue modulo a prime power of cosine higher-order Euler numbers H^〈(k)〉_〈2n〉(m) in terms of the linear combination of the Dirichlet L-function values L(s, χ) at positive ...integral arguments s or of generalized Bernoulli numbers. Our results are restricted to the equal parity case ; i.e. s and χ are of the same parity. In the process, we employ Yamamoto’s results on finite expressions in terms of Dirichlet L-function values for short interval character sums and in this sense our treatment is decisive, i.e. any ad-hoc transformation of short interval sums. The results obtained not only generalize the previous results pertaining to the congruences modulo a prime power of the class numbers as the special case of s=1 in terms of Euler numbers but also closes the chapter on possible similar research.続きを見る
|