作成者 |
|
本文言語 |
|
出版者 |
|
|
発行日 |
|
収録物名 |
|
巻 |
|
号 |
|
開始ページ |
|
終了ページ |
|
出版タイプ |
|
アクセス権 |
|
関連DOI |
|
関連URI |
|
関連HDL |
|
概要 |
In this paper, we show that n-dimensional (n ≥ 2) complete and non-compact smooth metric measure spaces with non-negative weighted Ricci curvature in which some Gagliardo-Nirenberg-type inequality hol...ds are not far from the model metric measure n-space (i.e., the Euclidean metric n-space). Moreover, this fact, together with two generalized volume comparison theorems given in [P. Freitas et al. Calc. Var. Partial Differential Equations 51 (2014), 701-724], surprisingly leads to an interesting rigidity theorem for the given metric measure spaces.続きを見る
|