<紀要論文>
DIMENSIONS IN A SEPARABLE METRIC SPACE

作成者
本文言語
出版者
発行日
収録物名
開始ページ
終了ページ
出版タイプ
アクセス権
関連DOI
関連DOI
関連URI
関連URI
関連HDL
関連情報
概要 It often occurs that a Borel finite measure plays an important role in estimating the Hausdorff dimension of a Borel set of the Euclidian space, for example [6, 12, 16, 21, 22]. In particular, in the ...Euclidean space and homogeneous (in the sense of Coifman and Weiss) space, Frostman's theorem [8, 14] and Tricot's theorem [20] hold and those facts imply the equivalence among dimensions and several indices of a finite Borel measure [7]. But it is not known whether Frostman's theorem and Tricot's theorem can be extended to general metric space or not. The aim of this paper is to analyse systematically the several fractional dimensions of a subset and a finite Borel measure and establish new relations among them in a general separable metric space. As an application, we prove that Frostman's and Tricot's theorems are equivalent.続きを見る

詳細

レコードID
査読有無
ISSN
DOI
NCID
タイプ
登録日 2009.09.24
更新日 2024.01.10

この資料を見た人はこんな資料も見ています