<会議発表論文>
Optimizing Bulletproof Natural Fiber-Reinforced Polymer Composite Materials Using a Hybrid Computational Simulation and Machine Learning Approach

作成者
本文言語
出版者
発行日
収録物名
開始ページ
終了ページ
会議情報
出版タイプ
アクセス権
権利関係
権利関係
概要 This study investigates the optimization of natural fiber-reinforced polymer composite (NFRPCs) creation for bulletproof applications by integrating computational simulation and machine learning (ML).... We incorporate abaca (Musa textilis) or pineapple leaf fibers (Piñatex), along with aramid and carbon fibers, into layered composite plates. Ballistic performance was modeled and predicted using simulated data from ANSYS Explicit Dynamics and validated through live bullet testing. ML models, such as Support Vector Machine (SVM) and Random Forest (RF) with optimized hyperparameters, achieved up to 80% prediction accuracy and an F1-score of 82% for abaca-reinforced composites, closely aligning with experimental results. However, lower prediction accuracy was observed for Piñatex-based composites, due to fiber variability and other factors identified in the study. This hybrid methodology highlights the potential of combining simulation and ML to reduce reliance on extensive live bullet testing, providing a data-driven pathway for the efficient development of high-performance bulletproof composite materials.続きを見る

本文ファイル

pdf 2025_p0472 pdf 3.62 MB 3  

詳細

EISSN
レコードID
主題
助成情報
登録日 2025.12.15
更新日 2025.12.15