作成者 |
|
|
|
|
|
|
本文言語 |
|
出版者 |
|
発行日 |
|
収録物名 |
|
巻 |
|
号 |
|
開始ページ |
|
出版タイプ |
|
アクセス権 |
|
権利関係 |
|
権利関係 |
|
関連DOI |
|
関連URI |
|
関連HDL |
|
概要 |
A barrier pillar between the surface and underground mining sections provides a critical buffer zone in the transition from the boxcut highwall to underground sections by isolating stress fields from ...underground sections and preventing them from affecting the boxcut highwall slope. In this study, an empirical scaled span method and Rocscience RS2 software were used to conduct parametric studies on key parameters for designing barrier pillars and analyzing the room and pillar design for a planned underground mine on the Great Dyke, Zimbabwe. The approach included analyzing the effect of barrier pillar width, assuming a 10° dipping angle of the orebody, with room and pillar dimensions of 7 m and 6 m, respectively. The impact on boxcut slope stability and the roof of the first stope was monitored. The stability of the barrier pillar was analyzed for varying widths (6 m, 10 m, 20 m, 30 m, and 40 m) and orebody dipping angles (0°, 10°, 20°, 30°, and 40°). The effect of deteriorated rock mass conditions, represented by Geological Strength Index (GSI) values from 30 to 50, was assessed. The optimum room and pillar design was evaluated against the planned 6 m pillar sizes. This comprehensive study aims to support the integrity and longevity of the critical structures of the mining operation.続きを見る
|