<学術雑誌論文>
Hybrid Machine Learning Model for Blast-Induced Peak Particle Velocity Estimation in Surface Mining: Application of Sparrow Search Algorithm in ANN Optimization

作成者
本文言語
出版者
発行日
収録物名
開始ページ
出版タイプ
アクセス権
権利関係
権利関係
関連DOI
関連URI
関連HDL
概要 Blast-induced ground vibrations present substantial safety and environmental hazards in surface mining operations. This study proposes and evaluates the Sparrow Search Algorithm-optimized ANN (SSA-ANN...) against artificial neural network (ANN), Genetic Algorithm-optimized ANN (GA-ANN), and empirical formula (USBM) to estimate peak particle velocity (PPV). In addition, the input parameters include key blasting design parameters and rock mass features (GSI and UCS). The SSA-ANN demonstrated superior prediction accuracy, attaining an average R2 of 0.51 using bootstrap validation, surpassing GA-ANN (0.41) and standard ANN (0.26). Furthermore, the incorporation of GSI enhanced the model’s geotechnical sensitivity. These results illustrate that the application of SSA-ANN alongside comprehensive rock mass characteristics can substantially decrease uncertainty in PPV prediction, therefore enhancing safety within the blast area and improving vibration control methods in blasting operations.続きを見る

本文ファイル

pdf 7384505 pdf 2.31 MB 1  

詳細

EISSN
レコードID
主題
タイプ
助成情報
登録日 2025.08.29
更新日 2025.08.29