<学術雑誌論文>
Forcing and Calculi for Hybrid Logics

作成者
本文言語
出版者
発行日
収録物名
開始ページ
終了ページ
出版タイプ
アクセス権
権利関係
関連DOI
概要 The definition of institution formalizes the intuitive notion of logic in a category-based setting. Similarly, the concept of stratified institution provides an abstract approach to Kripke semantics. ...This includes hybrid logics, a type of modal logics expressive enough to allow references to the nodes/states/worlds of the models regarded as relational structures, or multi-graphs. Applications of hybrid logics involve many areas of research, such as computational linguistics, transition systems, knowledge representation, artificial intelligence, biomedical informatics, semantic networks, and ontologies. The present contribution sets a unified foundation for developing formal verification methodologies to reason about Kripke structures by defining proof calculi for a multitude of hybrid logics in the framework of stratified institutions. To prove completeness, the article introduces a forcing technique for stratified institutions with nominal and frame extraction and studies a forcing property based on syntactic consistency. The proof calculus is shown to be complete and the significance of the general results is exhibited on a couple of benchmark examples of hybrid logical systems.続きを見る

本文ファイル

pdf godel-acm pdf 828 KB 115  

詳細

PISSN
EISSN
NCID
レコードID
注記
タイプ
登録日 2024.04.02
更新日 2024.04.11

この資料を見た人はこんな資料も見ています