<会議発表資料>
ADAPTIVE PROXIMAL GRADIENT METHODS FOR CONVEX BILEVEL OPTIMIZATION

作成者
本文言語
発行日
会議情報
アクセス権
概要 Bilevel optimization is a comprehensive framework that bridges single- and multi-objective optimization. It encompassess many general formulations, such as, but not limited to, standard nonlinear prog...rams. This work demonstrates how elementary proximal gradient iterations can be used to solve a wide class of convex bilevel optimization problems without involving subroutines. Compared to and improving upon existing methods, ours (1) can handle a much wider class of problems, including both constraints and nonsmooth terms, (2) does not require strong convexity or Lipschitz smoothness assumptions, and (3) provides a systematic adaptive stepsize selection strategy with no need of function evaluations. A linesearch-free variant is also proposed that eliminates wasteful backtracking trials at the sole expense of cost evaluations.続きを見る
目次 Bilevel optimization
 Setup & goals
 Algorithmic literature
 Examples
An adaptive proximal gradient solver
 Precursors
 adaBiM
 staBiM
Simulations
 Logistic regression
 Integral equations
 Minimum ℓ1-norm problems
 Number of backtracks
Conclusions
続きを見る

本文ファイル

pdf 6790346 pdf 1.06 MB 417  

詳細

レコードID
登録日 2023.06.16
更新日 2023.06.16

この資料を見た人はこんな資料も見ています