<学術雑誌論文>
Proximal Gradient Algorithms Under Local Lipschitz Gradient Continuity: A Convergence and Robustness Analysis of PANOC

作成者
本文言語
出版者
発行日
収録物名
開始ページ
終了ページ
出版タイプ
アクセス権
権利関係
権利関係
関連DOI
関連URI
関連HDL
概要 Composite optimization offers a powerful modeling tool for a variety of applications and is often numerically solved by means of proximal gradient methods. In this paper, we consider fully nonconvex c...omposite problems under only local Lipschitz gradient continuity for the smooth part of the objective function. We investigate an adaptive scheme for PANOC-type methods (Stella et al. in Proceedings of the IEEE 56th CDC, 2017), namely accelerated linesearch algorithms requiring only the simple oracle of proximal gradient. While including the classical proximal gradient method, our theoretical results cover a broader class of algorithms and provide convergence guarantees for accelerated methods with possibly inexact computation of the proximal mapping. These findings have also significant practical impact, as they widen scope and performance of existing, and possibly future, general purpose optimization software that invoke PANOC as inner solver.続きを見る

本文ファイル

pdf 4796002 pdf 941 KB 229  

詳細

PISSN
NCID
レコードID
主題
タイプ
助成情報
登録日 2022.08.19
更新日 2024.12.02