作成者 |
|
|
|
|
|
本文言語 |
|
出版者 |
|
発行日 |
|
収録物名 |
|
開始ページ |
|
終了ページ |
|
会議情報 |
|
出版タイプ |
|
アクセス権 |
|
権利関係 |
|
関連DOI |
|
|
概要 |
Training of neural networks amounts to nonconvex optimization problems that are typically solved by using backpropagation and (variants of) stochastic gradient descent. In this work we propose an alte...rnative approach by viewing the training task as a nonlinear optimal control problem. Under this lens, backpropagation amounts to the sequential approach (single shooting) to optimal control, where the states variables have been eliminated. It is well known that single shooting may lead to ill conditioning, and for this reason the simultaneous approach (multiple shooting) is typically preferred. Motivated by this hypothesis, an augmented Lagrangian algorithm is developed that only requires an approximate solution to the Lagrangian subproblems up to a user-defined accuracy. By applying this framework to the training of neural networks, it is shown that the inner Lagrangian subproblems are amenable to be solved using Gauss-Newton iterations. To fully exploit the structure of neural networks, the resulting linear least squares problems are addressed by employing an approach based on forward dynamic programming. Finally, the eectiveness of our method is showcased on regression datasets.続きを見る
|