<学術雑誌論文>
Detection of Asphalt Pavement Segregation Using Machine Learning Linear and Quadratic Discriminant Analyses

作成者
本文言語
出版者
発行日
収録物名
開始ページ
終了ページ
出版タイプ
アクセス権
Crossref DOI
権利関係
概要 Segregation (hot-mix asphalt segregation) is one of the main problems affecting asphalt pavement performance. The early detection is important, but the tests are quite expensive and time-consuming. Th...e visual examination is the cheapest method but too varied in judgement and can rise further problems. In this experiment, we developed machine learning linear and quadratic discriminant analyses to detect/classify segregated and non-segregated pavement asphalt. Six variables were employed: SD only, IR only, MAD only, IR-mean, MAD-mean, IR-mean, MAD-SDmean and IR-SD-mean. The results showed that the complexities of information affect machine learning performance. IR-SD-mean and MAD-SD-mean parameters gave best accuracy performance for training data at 99.2% (LDA)/98.5% (QDA) and testing data at 98.33% (LDA)/95% (QDA) respectively. In general, QDA gave more accuracy performance in comparison to LDA although our data dimension is small.続きを見る

本文ファイル

pdf 213-218 pdf 1.24 MB 587  

詳細

PISSN
EISSN
レコードID
査読有無
主題
助成情報
登録日 2022.04.11
更新日 2024.02.21

この資料を見た人はこんな資料も見ています