作成者 |
|
|
本文言語 |
|
出版者 |
|
|
発行日 |
|
収録物名 |
|
巻 |
|
開始ページ |
|
終了ページ |
|
会議情報 |
|
出版タイプ |
|
アクセス権 |
|
Crossref DOI |
|
概要 |
The study on spinal cage designs for their implementation in the medical field is developing over the years. Currently, many designs have been studied varying from the biomaterials and the designs. Th...is study aimed to determine the best design structure of an annealed titanium spinal cage with the integration of porous holes and to attain its mechanical performance under different loadings before topology optimization. 8 specimens were designed and analyzed based on porosity percentage, MIT, and FEA before undergoing topology optimization. The analysis was conducted on two loadings applied simultaneously to resemble the human body weight and the motion of the lumbar column. Results showed that the stress concentration of all specimens increased accordingly as the porosity volume increases, thus specimen 2 was selected due to it having the second-lowest stress concentration but also the more adequate pore volume for the bone graft filling.続きを見る
|