<学術雑誌論文>
The role of bioleaching microorganisms in saline water leaching of chalcopyrite concentrate

作成者
本文言語
出版者
発行日
収録物名
出版タイプ
アクセス権
権利関係
権利関係
関連DOI
関連DOI
関連URI
関連HDL
概要 In order to tackle the dual challenge of utilizing highly refractory chalcopyrite (CuFeS_2) while saving scarce freshwater resources, this study aimed to systematically understand the individual role ...of chemical lixiviant and bioleaching microorganisms in the complex Fe^3+_-Cu^2+_-SO_4^2−_-Cl^− chalcopyrite leaching system. In general freshwater bioleaching conditions, the Eh level sharply increased, and the “high-E_h-bioleaching” became the major leaching driving force. In this case, the lowest Cu yield was obtained. The chalcopyrite leaching reaction responded differently to different salinity levels. At a low salinity of 0.5% NaCl, chemical Cl^−_-leaching effect resulted in a higher Cu yield than the fresh-water “high-E_h-bioleaching” system. The growth of tested microbes was observed at 0.5% NaCl, but partial deactivation of microbial Fe-oxidation suppressed the E_h level. Under this condition, synergism between the chemical Cl^−_-leaching effect and the “low-E_h-bioleaching” effect was found. At a high salinity of 2% NaCl, on the other hand, no active cell growth was observed, and thus pre-grown cells were used to mimic the presence of Cl^−_-tolerant cells. Chemical Cl^−_-leaching readily proceeded at 2% NaCl at low E_h, but quickly ceased upon the depletion of H^+. The presence of bioleaching cells somewhat slowed down the speed of chemical Cl^−_-leaching, but the acid depletion was alleviated by microbial acid generation. Chemical Cl^−_-leaching, which favors low E_h condition, was the main driving force for chalcopyrite leaching at 2% NaCl. Therefore, the activity of Cl^−_-tolerant S-oxidizer alone, rather than mixed Fe- and S-oxidizing consortium, was shown to play a critical role in maximizing the chalcopyrite dissolution.続きを見る

本文ファイル

pdf 4737401 pdf 1.16 MB 384  

詳細

PISSN
NCID
レコードID
主題
助成情報
登録日 2021.11.30
更新日 2024.12.02