作成者 |
|
|
本文言語 |
|
出版者 |
|
発行日 |
|
収録物名 |
|
開始ページ |
|
終了ページ |
|
会議情報 |
|
出版タイプ |
|
アクセス権 |
|
権利関係 |
|
関連DOI |
|
関連HDL |
|
概要 |
A dynamic population size strategy is proposed for the fireworks algorithm (FWA) to adjust the population size based to the search results of the current generation. When the currently found optimal i...ndividual is updated, a linear decreasing method is activated to maintain an efficient exploitation speed. The population size is reduced by 1 until the minimum preset population size is reached, then the population size remains unchanged. Otherwise, we randomly generate a larger population size than the initial population and expand the explosion amplitudes of all firework individuals artificially, which the expectation that we can escape current local minima. To analyze the effectiveness of the proposed strategy, we combined it with the enhanced FWA (EFWA) together, and run the EFWA and (the EFWA + our proposed strategy) on 28 CEC 2013 benchmark functions in three different dimensions. Each function is run 30 trial times independently, and the Wilcoxon signed-rank test is applied to check significant differences. The statistical results showed that the proposed dynamic population size strategy can not only achieve a faster convergence speed for the FWA but also can jump out of trapped local minima more easily to maintain a higher performance, especially for high-dimensional problems.続きを見る
|