作成者 |
|
|
|
|
本文言語 |
|
出版者 |
|
|
発行日 |
|
収録物名 |
|
巻 |
|
開始ページ |
|
終了ページ |
|
会議情報 |
|
出版タイプ |
|
アクセス権 |
|
権利関係 |
|
関連DOI |
|
関連DOI |
|
|
関連URI |
|
|
概要 |
We present PANOC, a new algorithm for solving optimal control problems arising in nonlinear model predictive control (NMPC). A usual approach to this type of problems is sequential quadratic programmi...ng (SQP), which requires the solution of a quadratic program at every iteration and, consequently, inner iterative procedures. As a result, when the problem is ill-conditioned or the prediction horizon is large, each outer iteration becomes computationally very expensive. We propose a line-search algorithm that combines forwardbackward iterations (FB) and Newton-type steps over the recently introduced forward-backward envelope (FBE), a continuous, real-valued, exact merit function for the original problem. The curvature information of Newton-type methods enables asymptotic superlinear rates under mild assumptions at the limit point, and the proposed algorithm is based on very simple operations: access to first-order information of the cost and dynamics and low-cost direct linear algebra. No inner iterative procedure nor Hessian evaluation is required, making our approach computationally simpler than SQP methods. The lowmemory requirements and simple implementation make our method particularly suited for embedded NMPC applications.続きを見る
|