<紀要論文>
THE WEIL-ÉTALE FUNDAMENTAL GROUP OF A NUMBER FIELD I

作成者
本文言語
出版者
発行日
収録物名
開始ページ
終了ページ
出版タイプ
アクセス権
関連DOI
関連DOI
関連URI
関連URI
関連HDL
関連情報
概要 Lichtenbaum has conjectured (Ann of Math. (2) 170(2) (2009), 657–683) the existence of a Grothendieck topology for an arithmetic scheme X such that the Euler characteristic of the cohomology groups of... the constant sheaf Z with compact support at infinity gives, up to sign, the leading term of the zeta function ζ_X(s) at s = 0. In this paper we consider the category of sheaves X^-_L on this conjectural site for X = Spec(O_F) the spectrum of a number ring. We show that X^^-_L has, under natural topological assumptions, a welldefined fundamental group whose abelianization is isomorphic, as a topological group, to the Arakelov–Picard group of F. This leads us to give a list of topological properties that should be satisfied by X^^-_L. These properties can be seen as a global version of the axioms for the Weil group. Finally, we show that any topos satisfying these properties gives rise to complexes of étale sheaves computing the expected Lichtenbaum cohomology.続きを見る

詳細

レコードID
査読有無
主題
ISSN
DOI
NCID
タイプ
登録日 2013.08.14
更新日 2024.01.10

この資料を見た人はこんな資料も見ています