<会議発表論文>
Evaluation of User Fatigue Reduction Through IEC Rating-Scale Mapping

作成者
本文言語
出版者
発行日
収録物名
開始ページ
終了ページ
出版タイプ
アクセス権
関連DOI
関連DOI
関連URI
関連ISBN
関連HDL
関連情報
概要 We evaluate the convergence speed of an Interactive Evolutionary Computation (IEC) sing a rating-scale mapping for user fatigue reduction. First, we introduce the concept of mapping users' relative ra...tings to an “absolute scale”; this allows us to improve the performance of the IEC subjective evaluation characteristic predictor, which can in turn accelerate EC convergence and reduce user fatigue. Second, we experimentally evaluate he effectiveness of the proposed method using seven benchmark functions instead of a hunman user. The experimental results show that the convergence speed of an IEC using he proposed absolute rating data-trained predictor is much faster than an IEC using a conventional predictor trained using relative rating data.続きを見る
目次 1 Introduction
2 IEC with absolute rating-scale mapping
3 Experimental evaluations
4 Discussions
5 Conclusions

本文ファイル

pdf WSTST2005 pdf 288 KB 332  

詳細

レコードID
査読有無
ISBN
DOI
NCID
注記
登録日 2017.06.14
更新日 2021.10.06