<会議発表論文>
Evaluation of User Fatigue Reduction Through IEC Rating-Scale Mapping
作成者 | |
---|---|
本文言語 | |
出版者 | |
発行日 | |
収録物名 | |
巻 | |
開始ページ | |
終了ページ | |
出版タイプ | |
アクセス権 | |
関連DOI | |
関連DOI | |
関連URI | |
関連ISBN | |
関連HDL | |
関連情報 | |
概要 | We evaluate the convergence speed of an Interactive Evolutionary Computation (IEC) sing a rating-scale mapping for user fatigue reduction. First, we introduce the concept of mapping users' relative ra...tings to an “absolute scale”; this allows us to improve the performance of the IEC subjective evaluation characteristic predictor, which can in turn accelerate EC convergence and reduce user fatigue. Second, we experimentally evaluate he effectiveness of the proposed method using seven benchmark functions instead of a hunman user. The experimental results show that the convergence speed of an IEC using he proposed absolute rating data-trained predictor is much faster than an IEC using a conventional predictor trained using relative rating data.続きを見る |
目次 | 1 Introduction 2 IEC with absolute rating-scale mapping 3 Experimental evaluations 4 Discussions 5 Conclusions |
詳細
レコードID | |
---|---|
査読有無 | |
ISBN | |
DOI | |
NCID | |
注記 | |
登録日 | 2017.06.14 |
更新日 | 2021.10.06 |