作成者 |
|
本文言語 |
|
出版者 |
|
|
発行日 |
|
収録物名 |
|
巻 |
|
号 |
|
開始ページ |
|
終了ページ |
|
出版タイプ |
|
アクセス権 |
|
関連DOI |
|
関連DOI |
|
|
関連URI |
|
|
関連URI |
|
関連HDL |
|
関連情報 |
|
|
概要 |
In this paper, we give an elementary proof of Thomae formula for Z_3 curves. Let C(λ) be a cyclic triple covering parameterized by the set λ of its branch points. We explicitly give the zero divisors ...of the pullbacks θ_m(P) of theta functions with some characteristics m under the Abel–Jacobi map from C(λ) to its Jacobian. We take a symplectic basis for the homology group of C(λ) so that we can see the action of a covering transformation ρ on θ_m(P).続きを見る
|