<図書>
The regulators of Beilinson and Borel
責任表示 | José I. Burgos Gil |
---|---|
シリーズ | CRM monograph series ; v. 15 |
データ種別 | 図書 |
出版情報 | Providence, R.I. : American Mathematical Society , c2002 |
本文言語 | 英語 |
大きさ | xi, 104 p. ; 26 cm |
概要 | This mathematical monograph gives a complete proof of the fact that Borel's regulator map is twice Beilinson's regulator map. Burgos Gil (affiliation not cited) follows the argument sketched in Beilin...on's original paper and relies on very similar descriptions of the Chern-Weil morphisms and the van Est isomorphism. The volume also introduces topics such as simplicial techniques, Hopf algebras, Lie algebra cohomology, and continuous group cohomology. c. Book News Inc.続きを見る |
目次 | Machine generated contents note: Chapter 1. Introduction Chapter 2. Simplicial and Cosimplicial Objects 2.1. Basic Definitions and Examples 2.2. Simplicial Abelian Groups 2.3. The Geometric Realization 2.4. Sheaves on Simplicial Topological Spaces 2.5. Principal Bundles on Simplicial Manifolds 2.6. The de Rham Algebra of a Simplicial Manifold Chapter 3. H-Spaces and Hopf Algebras 3.1. Definitions 3.2. Some Examples 3.3. The Structure of Hopf Algebras 3.4. Rational Homotopy of H-Spaces Chapter 4. The Cohomology of the General Linear Group 4.1. The General Linear Group and the Stiefel Manifolds 4.2. Classifying Spaces and Characteristic Classes 4.3. The Suspension 4.4. The Stability of Homology and Cohomology 4.5. The Stable Homotopy of the General Linear Group 4.6. Other Consequences of Bott's Periodicity Theorem Chapter 5. Lie Algebra Cohomology and the Weil Algebra 5.1. de Rham Cohomology of a Lie Group 5.2. Reductive Lie Algebras 5.3. Characteristic Classes in de Rham Cohomology 5.4. The Suspension in the Weil Algebra 5.5. Relative Lie Algebra Cohomology Chapter 6. Group Cohomology and the van Est Isomorphism 6.1. Group Homology and Cohomology 6.2. Continuous Group Cohomology 6.3. Computation of Continuous Cohomology Chapter 7. Small Cosimplicial Algebras 7.1. Cosimplicial Algebras 7.2. Small Algebras Chapter 8. Higher Diagonals and Differential Forms 8.1. The Sheaf of Differential Forms 8.2. The Weil Algebra Revisited 8.3. A Description of the van Est Isomorphism Chapter 9. Borel's Regulator 9.1. Algebraic K-Theory of Rings 9.2. Definition of Borel's Regulator 9.3. The Rank of the Groups Km(o) 9.4. The Values of the Zeta Functions 9.5. A Renormalization of Borel's Regulator 9.6. Borel Elements 9.7. Explicit Representatives of the Borel Element Chapter 10. Beilinson's Regulator 10.1. Deligne-Beilinson Cohomology 10.2. Deligne-Beilinson Cohomology of B.GLn(C) 10.3. The Definition of Beilinson's Regulator 10.4. The Comparison Between the Regulators.続きを見る |
所蔵情報
状態 | 巻次 | 所蔵場所 | 請求記号 | 刷年 | 文庫名称 | 資料番号 | コメント | 予約・取寄 | 複写申込 | 自動書庫 |
---|---|---|---|---|---|---|---|---|---|---|
|
|
理系図3F 数理独自 | BURG/50/1 | 2002 |
|
023212001008006 |
|
書誌詳細
一般注記 | Includes bibliographical references and index |
---|---|
著者標目 | Burgos Gil, José Ignacio, 1962- |
件 名 | LCSH:Regulators(Mathematics) |
分 類 | LCC:QA247 DC21:512/.74 |
書誌ID | 1001401117 |
ISBN | 0821826301 |
NCID | BA55119006 |
巻冊次 | ISBN:0821826301 |
登録日 | 2009.11.02 |
更新日 | 2009.11.02 |