このページのリンク

引用にはこちらのURLをご利用ください

利用統計

  • このページへのアクセス:22回

  • 貸出数:1回
    (1年以内の貸出数:0回)

<図書>
Bayesian missing data problems : EM, data augmentation and noniterative computation

責任表示 Ming T. Tan, Guo-Liang Tian, Kai Wang Ng
シリーズ Chapman & Hall/CRC biostatistics series ; 32
データ種別 図書
出版情報 Boca Raton : Chapman & Hall/CRC , c2010
本文言語 英語
大きさ xviii 328 p. ; 25 cm
概要 Tan (U. of Maryland), Tian (U. of Hong Kong), and Ng (U. of Hong Kong) introduce inverse Bayes formula (IBF)-based methods for missing data problems which combine the strengths of existing approaches ...ia data augmentation. The graduate textbook develops a non-iterative sampling procedure to obtain i.i.d samples exactly from an observed posterior distribution, as well as a sampling approach for obtaining i.i.d samples approximately by combining IBF with the sampling importance resampling procedure and the expectation-maximization algorithm. Although the models can be used in many disciplines, the example applications focus on biomedical studies and health services research, especially cancer and HIV. Annotation ©2010 Book News, Inc., Portland, OR (booknews.com) 続きを見る

所蔵情報


: hbk. 理系図3F 数理独自 TAN,/25/1 2010
023212009004312

書誌詳細

一般注記 Includes bibliographical references and index
著者標目 *Tan, Ming T.
Tian, Guo-Liang
Ng, Kai W
件 名 LCSH:Bayesian statistical decision theory
LCSH:Missing observations (Statistics)
分 類 LCC:QA279.5
DC22:519.5/42
書誌ID 1001398294
ISBN 9781420077490
NCID BA91411930
巻冊次 : hbk. ; ISBN:9781420077490
登録日 2009.11.02
更新日 2009.11.02

類似資料

この資料を見た人はこんな資料も見ています