このページのリンク

引用にはこちらのURLをご利用ください

利用統計

  • このページへのアクセス:58回

  • 貸出数:0回
    (1年以内の貸出数:0回)

<図書>
Stochastic PDE's and Kolmogorov equations in infinite dimensions : lectures given at the 2nd Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Cetraro, Italy, August 24 - September 1, 1998

責任表示 N.V. Krylov, M. Röckner, J. Zabczyk ; editor, G. Da Prato
シリーズ Lecture notes in mathematics ; 1715 . Fondazione C.I.M.E., Firenze / adviser, Roberto Conti
データ種別 図書
出版情報 Berlin ; Tokyo : Springer , c1999
本文言語 英語
大きさ viii, 239 p. ; 24 cm
概要 Kolmogorov equations are second order parabolic equations with a finite or an infinite number of variables. They are deeply connected with stochastic differential equations in finite or infinite dime...sional spaces. They arise in many fields as Mathematical Physics, Chemistry and Mathematical Finance. These equations can be studied both by probabilistic and by analytic methods, using such tools as Gaussian measures, Dirichlet Forms, and stochastic calculus. The following courses have been delivered: N.V. Krylov presented Kolmogorov equations coming from finite-dimensional equations, giving existence, uniqueness and regularity results. M. Rockner has presented an approach to Kolmogorov equations in infinite dimensions, based on an LP-analysis of the corresponding diffusion operators with respect to suitably chosen measures. J. Zabczyk started from classical results of L. Gross, on the heat equation in infinite dimension, and discussed some recent results. 続きを見る
電子版へのリンク

所蔵情報



理系図3F 数理独自 SER/LNM/1715 c1999
023211999007735


理系図 自動書庫 410.8/L 493/(1715) 1999
054211999001501


数理 雑誌室 SER/LNM/K1715 1999
027232003290876

書誌詳細

一般注記 Includes bibliographical references
著者標目 Krylov, N. V. (Nikolaĭ Vladimirovich)
Röckner, Michael, 1956-
Zabczyk, Jerzy
Da Prato, Giuseppe, 1936-
Centro internazionale matematico estivo
*Centro internazionale matematico estivo. Session (1998 : Cetraro, Italy)
書誌ID 1001247356
ISBN 3540665455
NCID BA43843016
巻冊次 ISBN:3540665455
登録日 2009.09.18
更新日 2017.02.18

この資料を見た人はこんな資料も見ています