<図書>
Quantum algebras and poisson geometry in mathematical physics
責任表示 | M.V. Karasev, editor ; translated by Maria Shishkova |
---|---|
シリーズ | American Mathematical Society translations ; ser. 2, vol. 216 . Advances in the mathematical sciences (formerly Advances in Soviet mathematics) ; 57 |
データ種別 | 図書 |
出版情報 | Providence, R.I. : American Mathematical Society , c2005 |
本文言語 | 英語 |
大きさ | vii, 277 p. ; 27 cm |
概要 | How does the hydrogen atom know about the configuration of the surrounding magnetic and electric fields? What are the normal forms of the corresponding Poisson structure? This collection of translatio...s describes applications of Poisson geometry to fundamental and well- known problems in mathematical physics. The articles include Karasev's "Noncommutative Algebras, Nanostructures, and Quantum Dynamics Generated by Resonances," Karasev and Novikova's "Algebras with Polynomial Commutation Relations for a Quantum Particle in Electric and Magnetic Fields," Vorobjjev's "Poisson Structures and Linear Euler Systems over Symplectic Manifolds," and also his "Poisson Equivalence over a Symplectic Leaf." Annotation ©2006 Book News, Inc., Portland, OR (booknews.com) 続きを見る |
目次 | Noncommutative algebras, nanostructures, and quantum dynamics generated by resonances / M. Karasev Algebras with polynomial commutation relations for a quantum particle in electric and magnetic fields / M. Karasev and Elena Novikova Poisson structures and linear Euler systems over symplectic manifolds / Yurii Vorobjev Poisson equivalence over a symplectic leaf / Y. Vorobjev. |
電子版へのリンク | https://hdl.handle.net/2324/6833039 |
所蔵情報
状態 | 巻次 | 所蔵場所 | 請求記号 | 刷年 | 文庫名称 | 資料番号 | コメント | 予約・取寄 | 複写申込 | 自動書庫 |
---|---|---|---|---|---|---|---|---|---|---|
|
|
理系図3F 数理独自 | SER/AMST/216 | 2005 |
|
023212005006300 |
|
書誌詳細
一般注記 | Includes bibliographical references |
---|---|
著者標目 | *Karasev, M. V. (Mikhail Vladimirovich) Shishkova, Maria |
書誌ID | 1001244076 |
ISBN | 0821840401 |
NCID | BA74400519 |
巻冊次 | ISBN:0821840401 |
登録日 | 2009.09.18 |
更新日 | 2017.02.18 |