このページのリンク

引用にはこちらのURLをご利用ください

利用統計

  • このページへのアクセス:25回

  • 貸出数:17回
    (1年以内の貸出数:0回)

<図書>
Hamilton's Ricci flow

責任表示 Bennett Chow, Peng Lu, Lei Ni
シリーズ Graduate studies in mathematics ; v. 77
データ種別 図書
出版情報 Providence, R.I. : American Mathematical Society , c2006
本文言語 英語
大きさ xxxvi, 608 p. : ill. ; 26 cm
概要 Used as an analytical method for studying the geometry and topology of manifolds, the study of Ricci flow presumes some background in Riemannian geometry, which the authors review here, along with bri...f introductions to some general methods of geometric analysis and other geometric flows. They cover the fundamentals of the Ricci flow equation, closed three-manifolds with positive Ricci curvature, Ricci solitons and special solutions, isoperimetric estimates and no local collapsing, preparation for singularity analysis, high-dimensional and noncompact Ricci flow, singularity analysis, ancient solutions, differential Harnack estimates, space-time geometry, and appendices on geometric analysis related to Ricci flow and analytical techniques for geometric flows. The authors provide exercises with solutions for selected questions and worked equations. Annotation ©2007 Book News, Inc., Portland, OR (booknews.com) 続きを見る
電子版へのリンク

所蔵情報



理系図3F 数理独自 CHOW/5/2 2006
023212006007101

書誌詳細

一般注記 "Science Press."
"This edition is published by the American Mathematical Society under license from Science Press."--T.p. verso
Includes bibliographical references (p. 573-601) and index
著者標目 *Chow, Bennett
Lu, Peng, 1964-
Ni, Lei, 1969-
件 名 LCSH:Global differential geometry
LCSH:Ricci flow
LCSH:Riemannian manifolds
分 類 LCC:QA670
DC22:516.3/62
書誌ID 1001235344
ISBN 9780821842317
NCID BA79942665
巻冊次 ISBN:9780821842317 ; XISBN:0821842315
登録日 2009.09.18
更新日 2017.02.18

類似資料

この資料を見た人はこんな資料も見ています

この資料を借りた人はこんな資料も借りています