<図書>
A unified approach to boundary value problems
責任表示 | Athanassios S. Fokas |
---|---|
シリーズ | CBMS-NSF regional conference series in applied mathematics ; 78 |
データ種別 | 図書 |
出版情報 | Philadelphia : Society for Industrial and Applied Mathematics , c2008 |
本文言語 | 英語 |
大きさ | xv, 336 p. ; 25 cm |
概要 | This text presents a new approach to analysing initial-boundary value problems for integrable partial differential equations. |
目次 | A new transform method for linear evolution equations Evolution equations on the half line Evolution equations on the finite interval Asymptotics and a novel numerical technique Analytical inversion of integrals From PDEs to classical transforms Riemann-Hilbert and d-bar problems The Fourier transform and its variations The inversion of the attenuated radon transform and medical imaging The Dirichlet to Neumann map for a moving boundary Novel integral representations for linear boundary value problems Divergence formulation, the global relation, and lax pairs Rederivation of the integral representations on the half-line and the finite interval The basic elliptic PDEs in a polygonal domain Novel analytical and numerical methods for elliptic PDEs in a convex polygon The new transform method for elliptic PDEs in simple polygonal domains Formulation of Riemann-Hilbert problems A collocation method in the Fourier plane Integrable nonlinear PDEs From linear to integrable nonlinear PDEs Nonlinear integrable PDEs on the half-line Linearizable boundary conditions The generalized Dirichlet to Neumann map Asymptotics of oscillatory Riemann-Hilbert problems.続きを見る |
所蔵情報
状態 | 巻次 | 所蔵場所 | 請求記号 | 刷年 | 文庫名称 | 資料番号 | コメント | 予約・取寄 | 複写申込 | 自動書庫 |
---|---|---|---|---|---|---|---|---|---|---|
|
|
理系図3F 数理独自 | FOKA/10/2 | 2008 |
|
023212008006226 |
|
書誌詳細
一般注記 | Includes bibliographical references and index |
---|---|
著者標目 | *Fokas, A. S., 1952- |
件 名 | LCSH:Boundary value problems |
分 類 | LCC:QA379 DC22:515/.35 |
書誌ID | 1001233496 |
ISBN | 9780898716511 |
NCID | BA8796144X |
巻冊次 | ISBN:9780898716511 |
登録日 | 2009.09.18 |
更新日 | 2009.11.02 |