<図書>
Combinatorics of finite sets
責任表示 | Ian Anderson |
---|---|
データ種別 | 図書 |
出版情報 | Mineola, N.Y. : Dover , 2002 |
本文言語 | 英語 |
大きさ | xv, 250 p. ; 22 cm |
概要 | Coherent treatment provides comprehensive view of basic methods and results of the combinatorial study of finite set systems. The Clements-Lindstrom extension of the Kruskal-Katona theorem to multise...s is explored, as is the Greene-Kleitman result concerning k-saturated chain partitions of general partially ordered sets. Connections with Dilworth's theorem, the marriage problem, and probability are also discussed. 続きを見る |
目次 | Machine generated contents note: 1. Introduction and Sperner's theorem 1.1 A simple intersection result 1.2 Sperner's theorem 1.3 A theorem of Bollobas Exercises 1 2. Normalized matchings and rank numbers 2.1 Sperner's proof 2.2 Systems of distinct representatives 2.3 LYM inequalities and the normalized matching property 2.4 Rank numbers: some examples Exercises 2 3. Symmetric chains 3.1 Symmetric chain decompositions 3.2 Dilworth's theorem 3.3 Symmetric chains for sets 3.4 Applications 3.5 Nested chains 3.6 Posets with symmetric chain decompositions Exercises 3 4. Rank numbers for multisets 4.1 Unimodality and log concavity 4.2 The normalized matching property 4.3 The largest size of a rank number Exercises 4 5. Intersecting systems and the Erdos-Ko-Rado theorem 5.1 The EKR theorem 5.2 Generalizations of EKR 5.3 Intersecting aintichains with large members 5.4 A probability application of EKR 5.5 Theorems of Milner and Katona 5.6 Some results related to the EKR theorem Exercises 5 6. Ideals and a lemma of Kleitman 6.1 Kleitman's lemma 6.2 The Ahlswede-Daykin inequality 6.3 Applications of the FKG inequality to probability theory 6.4 Chvatal's conjecture Exercises 6 7. The Kruskal-Katona theorem 7.1 Order relations on subsets 7.2 The i-binomial representation of a number 7.3 The Kruskal-Katona theorem 7.4 Some easy consequences of Kruskal-Katona 7.5 Compression Exercises 7 8. Antichains 8.1 Squashed antichains 8.2 Using squashed antichains 8.3 Parameters of intersecting antichains Exercises 8 9. The generalized Macaulay theorem for multisets 9.1 The theorem of Clements and Lindstrom 9.2 Some corollaries 9.3 A minimization problem in coding theory 9.4 Uniqueness of maximum-sized antichains in multisets Exercises 9 10. Theorems for multisets 10.1 Intersecting families 10.2 Antichains in multisets 10.3 Intersecting antichains Exercises 10 11. The Littlewood-Offord problem 11.1 Early results 11.2 M-part Sperner theorems 11.3 Littlewood-Offord results Exercises 11 12. Miscellaneous methods 12.1 The duality theorem of linear programming 12.2 Graph-theoretic methods 12.3 Using network flow Exercises 12 13. Lattices of antichains and saturated chain partitions 13.1 Antichains 13.2 Maximum-sized antichains 13.3 Saturated chain partitions 13.4 The lattice of k-unions Exercises 13 Hints and solutions References Index.続きを見る |
所蔵情報
状態 | 巻次 | 所蔵場所 | 請求記号 | 刷年 | 文庫名称 | 資料番号 | コメント | 予約・取寄 | 複写申込 | 自動書庫 |
---|---|---|---|---|---|---|---|---|---|---|
|
: pbk | 理系図3F 数理独自 | ANDE/50/2 | 2002 |
|
023212002006511 |
|
書誌詳細
一般注記 | "This Dover edition, first published in 2002, is a corrected republication of the work as published by Oxford University Press, Oxford, England, and New York, in 1989 (first publication: 1987)"--T.p. verso Includes bibliographical references (p. 241-248) and index |
---|---|
著者標目 | *Anderson, Ian |
件 名 | LCSH:Set theory LCSH:Combinatorial analysis |
分 類 | LCC:QA248 DC19:511.3/22 |
書誌ID | 1001231468 |
ISBN | 0486422577 |
NCID | BA59836654 |
巻冊次 | : pbk ; ISBN:0486422577 |
登録日 | 2009.09.18 |
更新日 | 2009.11.02 |