<図書>
Advances in independent component analysis
責任表示 | Mark Girolami (ed.) |
---|---|
シリーズ | Perspectives in neural computing |
データ種別 | 図書 |
出版情報 | London : Springer , c2000 |
本文言語 | 英語 |
大きさ | xvii, 279 p. : ill. ; 24 cm |
概要 | Independent Component Analysis (ICA) is a fast developing area of intense research interest. Following on from Self-Organising Neural Networks: Independent Component Analysis and Blind Signal Separat...on, this book reviews the significant developments of the past year.It covers topics such as the use of hidden Markov methods, the independence assumption, and topographic ICA, and includes tutorial chapters on Bayesian and variational approaches. It also provides the latest approaches to ICA problems, including an investigation into certain "hard problems" for the very first time.Comprising contributions from the most respected and innovative researchers in the field, this volume will be of interest to students and researchers in computer science and electrical engineering; research and development personnel in disciplines such as statistical modelling and data analysis; bio-informatic workers; and physicists and chemists requiring novel data analysis methods. 続きを見る |
所蔵情報
状態 | 巻次 | 所蔵場所 | 請求記号 | 刷年 | 文庫名称 | 資料番号 | コメント | 予約・取寄 | 複写申込 | 自動書庫 |
---|---|---|---|---|---|---|---|---|---|---|
|
|
芸工図 2F 工学図書室 | 549.9/G47 | 2000 |
|
013212006001943 |
|
書誌詳細
一般注記 | Includes bibliographical references and index |
---|---|
著者標目 | Girolami, Mark, 1963- |
件 名 | LCSH:Neural networks(Computer science) LCSH:Multivariate analysis |
分 類 | DC21:006.3/2 LCC:QA76.87.A378 |
書誌ID | 1001202363 |
ISBN | 1852332638 |
NCID | BA48309624 |
巻冊次 | ISBN:1852332638 |
登録日 | 2009.09.18 |
更新日 | 2009.09.18 |