<図書>
Asymptotic theory of finite dimensional normed spaces
責任表示 | Vitali D. Milman, Gideon Schechtman ; with an appendix by M. Gromov |
---|---|
シリーズ | Lecture notes in mathematics ; 1200 |
データ種別 | 図書 |
出版情報 | Berlin ; Tokyo : Springer-Verlag , 1986 |
本文言語 | 英語 |
大きさ | viii, 156 p. ; 25 cm |
概要 | Vol. 1200 of the LNM series deals with the geometrical structure of finite dimensional normed spaces. One of the main topics is the estimation of the dimensions of euclidean and l DEGREESn p spaces w...ich nicely embed into diverse finite-dimensional normed spaces. An essential method here is the concentration of measure phenomenon which is closely related to large deviation inequalities in Probability on the one hand, and to isoperimetric inequalities in Geometry on the other. The book contains also an appendix, written by M. Gromov, which is an introduction to isoperimetric inequalities on riemannian manifolds. Only basic knowledge of Functional Analysis and Probability is expected of the reader. The book can be used (and was used by the authors) as a text for a first or second graduate course. The methods used here have been useful also in areas other than Functional Analysis (notably, Combinatorics) 続きを見る |
電子版へのリンク | https://hdl.handle.net/2324/7017354 |
所蔵情報
状態 | 巻次 | 所蔵場所 | 請求記号 | 刷年 | 文庫名称 | 資料番号 | コメント | 予約・取寄 | 複写申込 | 自動書庫 |
---|---|---|---|---|---|---|---|---|---|---|
|
|
理系図3F 数理独自 | SER/LNM/1200 | 1986 |
|
068222186008603 |
|
|||
|
|
理系図 自動書庫 | 410.8/L 493/(1200) | 1986 |
|
068582186009813 |
|
|||
|
: gw | 数理 雑誌室 | SER/LNM/K1200 | 1986 |
|
068252186008710 |
|
書誌詳細
一般注記 | Appendix: Isoperimetric inequalities in Riemannian manifolds Includes index |
---|---|
著者標目 | *Milman, Vitali D., 1939- Schechtman, Gideon, 1947- |
件 名 | LCSH:Normed linear spaces LCSH:Convex sets LCSH:Limit theorems (Probability theory) |
分 類 | LCC:QA3 LCC:QA322.2 DC19:510 s DC19:515.7/3 NDC8:410.8 NDC8:415.5 |
書誌ID | 1000028174 |
ISBN | 3540167692 |
NCID | BA00223257 |
巻冊次 | : gw ; ISBN:3540167692 : us ; ISBN:0387167692 |
登録日 | 2009.09.10 |
更新日 | 2017.02.18 |