
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

System-Level Techniques for Estimating and
Reducing Energy Consumption in Real-Time
Embedded Systems

Ishihara, Tohru
System LSI Research Center, Kyushu University

Goudarzi, Maziar
System LSI Research Center, Kyushu University

https://hdl.handle.net/2324/8316

出版情報：International SoC Design Conference, pp.67-72, 2007-10
バージョン：
権利関係：

System-Level Techniques for Estimating and Reducing
Energy Consumption in Real-Time Embedded Systems

Tohru Ishihara Maziar Goudarzi

System LSI Research Center, Kyushu University, Fukuoka, Japan
{ishihara,goudarzi}@slrc.kyushu-u.ac.jp

Abstract - Energy consumption is a fundamental
barrier in taking full advantage of today and future
semiconductor manufacturing technologies. We present
our recent research activities and results on estimating
and reducing dynamic and static energy under real-
time constraints in embedded systems. This includes
techniques and tools for (i) estimating instantaneous
energy consumption of embedded processors during an
application execution, (ii) reducing energy consumption
by optimally mapping functions and data items to the
scratch-pad memory (SPM), the cacheable, and non-
cacheable memory regions of the processor memory
space, (iii) reducing the energy consumption of SPM by
partitioning it into two sections with different dynamic
vs. static power dissipations, (iv) reducing leakage
energy in instruction cache memories by taking
advantage of value-dependence of SRAM leakage due
to within-die Vth variation, (v) choosing higher
threshold voltage and compensating the delay-violating
cache-lines by additional cache ways, and (vi) reducing
energy of the logic-part of processor cores by statically
implementing multiple same-ISA cores with different
energy and performance characteristics.

Keywords: Embedded system, power estimation,
power reduction, dynamic power, static power, scratch-
pad memory, cache memory, compiler optimization.

1 Introduction
There is a wide consensus that the energy

consumption is a fundamental barrier in taking full
advantage of today and future semiconductor
manufacturing technologies. We present our recent
research activities and results in three categories:
estimating software power consumption, reducing
energy of the memory subsystem, and dynamically
managing the energy of the logic core of the processor.
Firstly, we present a technique to estimate instantaneous
energy consumption of embedded processors during an
application execution. We train a per-processor energy-
model which receives statistics from the processor
instruction-set simulator (ISS) and gives the
instantaneous energy consumption. Secondly, we
reduce energy consumption by optimally mapping
functions and data items to the scratch-pad memory
(SPM), the cacheable, and non-cacheable memory
regions of the processor memory space. Thirdly, to
reduce the energy consumption of SPM, we partition it
into two sections: one section favors more frequently
accessed items by providing low-dynamic-energy
SRAM cells, while the other section reduces leakage

energy by using higher threshold voltage (Vth). Both of
these sections can be accessed at the same latency,
which makes it easy to integrate this SPM into off-the-
shelf processor IPs. Fourthly, in order to reduce energy
of the logic-part of processor cores, we statically
implement multiple same-ISA cores with different
energy and performance characteristics. Power
management software dynamically selects one of the
cores based on the criticality of the task and the
proximity of the deadline. Fifthly, we reduce leakage
energy in instruction cache memories by taking
advantage of value-dependence of SRAM leakage due
to within-die Vth variation. We propose techniques to
better match the instructions to the less-leaky state of
their corresponding cache cells. Finally, we reduce
leakage energy of caches by using higher Vth. Since a
few cache-lines will then violate the original cache
access latency due to the within-die delay variation of
SRAM cells, we replace them with one/two redundant
cache-ways so as to keep the cache capacity, latency,
and yield intact.

 In the rest of this paper, in Section 2 we present the
instantaneous power estimation technique. Section 3
provides various techniques to reduce power
consumption of the memory subsystem and Section 4
presents our technique for power reduction of the core
logic part. Finally, Section 5 summarizes and concludes
the paper.

2 Software Power Estimation
This section shows an overview of our energy

characterization tool which helps designers in
developing a fast and accurate energy model for a target
processor-based system. We use a linear model for
energy estimation and find the coefficients of the model
using multiple linear regression analysis. For more
detailed information of our tool see [1].

2.1 Energy Characterization

The energy consumption of a processor can be
estimated using the following linear formula,

)1(
0

∑
=

⋅=
N

i

iiestimate PcE

where Pi’s, ci’s and N are the parameters of the model,
the corresponding coefficients and the number of
parameters, respectively. The first step for the modeling
is to find Pi’s required for estimating the energy
consumption of the target processor system. The Pi’s
should be parameters whose values can be easily

obtained using a fast simulator like an ISS. For example,
Pi’s can be the number of load and store instructions
executed, the number of cache misses, etc. Once the
required set of parameters is obtained, the next step is to
find a training bench for the energy characterization.
Note that the number of cycles simulated for the training
bench is much smaller than that for target application
programs. In our tool, the generated training benche is
simulated only about 500,000 cycles while the full
simulation of the target application programs needs
bilions of cycles. More detailed explanation for our
method to generate the training bench is presented in [1].
The final step is to find the coefficients, ci’s
corresponding to the Pi’s. This is done by using multiple
linear regression analysis. The energy consumption
Eestimate is then calculated using Equation (1). Figure 1
shows an overview of our energy characterization flow.

Gate-Level
Simulation

Instruction-Set
Simulation

Parameter Extraction

Linear Equation

Linear Programming

Energy Calculation

E'1

P11

= c P111 +c P122 +c P133

, P12, P ...

...
E'2= c P211 +c P222 +c P233 ...

E'n

E1
E2

En = c Pn11 +c Pn22 +c Pn33 ...

13 Pn1, Pn2, P ...n3

Netlist

EnE1

 Library Training Bench

Figure 1 : Overview of Energy Characterization

To obtain the reference energy values, we simulate the
processor system at gate-level for a fixed number of
instructions. We refer to this number of instructions of
test sequence as the instruction frame. The width is the
same for all instruction frames as shown in Figure 2.
Since we perform gate-level simulation and calculate the
energy consumption values for all instruction frames,
this step is time-consuming. However, it needs to be
done only once for the characterization.

0.0

0.5

1.0

1.5

En
er

gy
 C

on
su

m
pt

io
n

[J
]

Executed Frames

Instruction Frame

Figure 2 : An Example of Instruction Frame

 We, next, obtain an instruction trace for each
application program using an instruction-set simulator.
The traces are divided into small segments
corresponding to instruction frames. Pi’s should be
parameters that can be easily extracted from instruction
traces. For a set of Pi’s, we find coefficients which
minimize Σ|Eestimate(i)−Egate-level(i)|, where Egate-level(i) and
Eestimate(i) are the energy consumption values obtained
by gate-level simulation and Equation (1) for the i-th
instruction frame, respectively.

2.2 Debugger-based power estimation

Once the energy model is developed, the energy
consumption of software running on the processor
system can be estimated using a cycle-inaccurate
instruction-set simulator (ISS) with the speed of
300,000 instructions per second. We use our tool for
characterizing the energy consumption of two
commercial microprocessors with their on-chip caches
and an off-chip SDRAM. The accuracy of our method
is very good as shown in Figure 3. Experimental results
using three benchmark programs demonstrate that the
error of our technique is on an average 3% compared to
the gate-level estimation results.

50

100

150

200

The Number of Instructions Executed
En

er
gy

C
on

su
m

pt
io

n
[μ

J]

Gate Level
Our Approach

Figure 3: Results for JPEC encoder run on M32R-II

Today’s SoC chips are usually implemented with
off-the-shelf processor IPs. Even for those SoC chips,
our method can accurately model the energy
consumption since our tool does not need to know a
detailed internal architecture of the target processor.
Another key point of our method is that it works very
well even with a cycle-inaccurate simulator like a GNU
debugger which is a de facto standard of software
debugger. This helps compilers or programmers to
customize software codes to meet customers’ needs for
low power.

3 Memory Power Reduction
3.1 Code and data placement

This section addresses our code placement technique
for reducing the total energy consumption of embedded
processor systems including a CPU core, on-chip and
off-chip memories. The overview of our technique for
optimizing the code placement is shown in Figure 4.

 Memory Address Space

 Non-cacheable
 region

 Cacheable
 region

 Scratchpad
 file
 register

 Scratchpad

 Cache

 region

Processor

CPU
core

Energy and clock cycles
required for on-chip memory
access, off-chip access,
logic part and etc.

Energy Characterization
Profiling

Application Program

Address Trace

Our Code Placement

Figure 4: The Flow of Code Layout Optimization

We first extract hardware dependent parameter
values like the energy consumption and clock cycles
required for memory accesses using a target cell ligrary
and a netlist of the target processor. Instruction and data
address traces for a target application program can be
obtained using instruction-set simulator (ISS). Then,
our code placement algorithm simultaneously finds the
optimal code allocations for a scratchpad memory, a
cacheable memory region, and a non-cacheable memory
region using these previously obtained hardware and
software characteristics. Note that the code and data
allocation is fixed at a compile time and is not changed
at run time. For more detailed information of out code
placement algorithm, see [5].

 Figure 5 shows the energy consumption and
performance results for compress. Left and right sides
of each figure show results for 16kB and 8kB 4-way
caches, respectively. 16kB, 8kB and 4kB scratchpad
memories are examined as well. Vertical bar charts and
straight lines represent the energy consumption and the
number of cycles executed, respectively. The following
five approaches are compared.

♦ ORG: Given benchmark programs are compiled
with –O3 option. Every functions and data objects
resides in a cacheable region in this case.

♦ CHE: Locations of functions and data objects are
optimized using a conventional code placement
technique. Scratchpad memory is not used in this
case.

♦ SPM: Functions and data objects are relocated to a
scratchpad memory using a conventional technique
which maximizes the number of SPM accesses.

♦ CBN: Locations of functions and data objects are
modified by applying CHE just after applying SPM.

♦ OUR: Locations of functions and data objects are
optimized by our algorithm.

0

2

4

6

8

10

16

17

18

4-way set-associative cache
set=256, cache size=16KB

4-way set-associative cache
set=128, cache size=8KB

SPM: 16KB

Off-chip
Logic

Cache
Scratchpad

OR
G

SP
M

CH
E

CB
N

OU
R

OR
G

SP
M

CH
E

CB
N

OU
R

OR
G

SP
M

CH
E

CB
N

OU
R

OR
G

SP
M

CH
E

CB
N

OU
R

OR
G

SP
M

CH
E

CB
N

OU
R

OR
G

SP
M

CH
E

CB
N

OU
R

SPM: 8KB SPM: 4KB SPM: 16KB SPM: 8KB SPM: 4KB

E
ne

rg
y

C
on

su
m

pt
io

n
[m

J]

Ex
ec

ut
io

n
C

yc
le

 [M
 c

yc
le

]

Figure 5: Optimization Results for Compress

Those results are obtained using a commercial
embedded processor (SH3-DSP) and an off-chip
SDRAM (Micron). As one can see from the results, the
energy consumption of any benchmark program
optimized with our approach, OUR, is always the
smallest of all. If we employ a large scratchpad memory
on a chip, the object code optimized with SPM or CBN
consumes higher energy than that optimized with CHE.
This is because the scratchpad-based compile-time
memory is less energy efficient than the cache-based
run-time memory if the scratchpad memory size is
larger than the cache memory size. In this case, CHE

outperforms SPM and CBN in terms of energy
consumption. However, the object code optimized with
CHE needs more execution time than that optimized
with SPM or CBN. In many cases, our approach is
better than the best result obtained with the other
approaches in terms of both energy consumption and
execution time. More specifically, for the processor
with 8KB 4-way set-associative cache and 16KB
scratchpad memories, our algorithm reduces the energy
consumption of the processor system by 23% without
any performance loss. For the 8KB 4-way set-
associative cache and 4KB scratchpad memories, the
result of our approach is 10% smaller in energy
consumption and 6% faster in execution time compared
to the best result obtained by the conventional approach.
Our future work will be devoted to extend our current
algorithm to find a memory configuration and the best
code layout for them concurrently.

3.2 Hybrid SPM design

 On-chip memories generally use higher supply (VDD)
and threshold (Vth) voltages than those of logic parts to
suppress the static power consumption without
increasing the access latency of the memories. This
design policy, however, increases the dynamic power
consumption since it is quadratically proportional to the
VDD. This section presents a hybrid memory
architecture which consists of the following two
regions; 1) a dynamic-power conscious region which
uses low VDD and low Vth and 2) a static-power
conscious region which uses high VDD and high Vth.
The key of our architecture is that the access latencies
for the two regions are equal to each other, which eases
to integrate our memory into processors without major
modifications of the internal processor architecture [3].
We can save the total power consumption by gathering
the memory accesses to the dynamic-power conscious
region as shown in Figure 6.

Figure 6: Code and Data Allocation for Hybrid Memory

Suppose we have two types of SRAM modules as
shown in Table 1. DP and SP represent dynamic-power
conscious implementation and static-power conscious
implementation, respectively.

Table 1. Delay and Energy Specifications of SRAM
SRAM
type

VDD
[V]

Process
option

Delay
[ps]

Leakage/
cell [nW]

Dynamic
Energy [fJ]

DP 0.75 HP 197 9.27 78.1
SP 1.2 MP 198 6.71 272.0

Middle VDD
Middle Vth

Low VDD
Low Vth

 (DP-conscious)

High VDD
High Vth

(SP-conscious)

Conventional memory Hybrid Memory

frequently
accessed
code/data

infrequently
accessed
code/data

Note that the values in Table 1 are obtained from SPICE
simulation for our original SRAM modules designed
with a commercial 90nm process technology. In this
process technology, two process options, HP and MP,
are provided. Device parameters like Vth and Tox (i.e.,
gate oxide thickness) in the HP option are chosen for
improving performance of the circuits. On the other
hand, the paremeters in the MP option are chosen for
low power design.

Once the delay and energy specifications of SRAM
modules are obtained, the next step is to find code and
data allocation. Our algorithm proposed in [3] finds the
sizes of two regions and code/data allocations to the
regions concurrently so as to minimize the total energy
consumption of the hybrid scratchpad memory.
Experiments using three benchmark programs, JPEG
encoder, MPEG2 encoder, and compress, demonstrate
that our technique reduces the energy consumption of
the hybrid memory by 49% at the best case compared to
the normal scratchpad design (see Figure 7).

Figure 7: Power estimation results for hybrid memories

3.3 Leakage reduction by value control

Random Dopant Fluctuation (RDF) [4] within the
same die results in changes in the Vth of transistors.
Transistors of cache SRAM cells are more affected
since they have minimal physical channel area. The
mismatch among Vth of transistors of a single SRAM
cell results in different leakage currents depending on
the value stored in the cell. Thus leakage of the cache
memory can be reduced if the values with less leakage
can be more often stored in each SRAM cell. We
propose techniques to reduce instruction-cache leakage
using this phenomenon.

Value-Dependence of SRAM Leakage. When the
SRAM cell is storing a 1 (Figure 4) only three
transistors contribute to the total leakage (M1, M2, M5);
when storing a 0, the other three transistors leak [5].

 Figure 8: Different transistors leak based on cell value

 Since subthreshold leakage exponentially depends on
Vth, total leakage can be significantly different in the
two states. Figure 9 shows that at 60mV variation in Vth,
this difference is 57% averaged over cells of 1000
16KB caches. Moreover, the difference between the
lowest and the highest total leakage of the cache
memory is 70% on an average.

70.62

57.08

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

Intra-die Vth standard deviation (Sigma Vth-intra)

M
ax

im
um

 p
os

si
bl

e
sa

vi
ng

 (%
)

Per-cache
Per-cell

Figure 9: Leakage difference in 16KB caches.

Our Approach. We propose three techniques:
(i) instructions within a basic-block can be rearranged
(subject to dependency among them) to better match
their corresponding SRAM cells in the instruction cache,
(ii) register operands can be statically renamed to
further improve the matching, (iii) unused lines of the
cache can be initialized by their minimum-leakage value.
By offline testing, the less leaky state of each SRAM
cell is determined. Then, (i) and (ii) above are applied to
the binary executable of each application. The third
technique (cache initialization) is done at processor boot
time.

Experimental Results. We applied the technique on six
embedded benchmarks compiled with no compiler
option for M32R processor. Figure 10 shows the
leakage power breakdown to that of used and unused
cache lines before and after applying our techniques
when the standard deviation of within-die Vth variation
is 60mV. The results show that the leakage power can
be reduced by 54% at the best case compared to the
results of a cache memory which does not use our
technique. Results are averaged over 1000 simulated
8KB direct-map caches. At higher variations resulting
from technology scaling, the saving increases (Figure
11). For further details see [5].

0

50

100

150

200

250

mpeg2 fft jpeg compress fir dct

Le
ak

ag
e

po
w

er
 (u

W
)

Accessed cache-lines Unused cache-lines

Improved

Original
53.52% saving

Figure 10: Average leakage on 8KB direct-map caches

0

2

4

6

8

10

12

14

E
n
e
rg

y
C

o
n
su

m
pt

io
n
 [

μ
J
] Static

Dynamic

49%

SP-design

Hybrid memory
DP-design

32KB16KB8KB 8KB 16KB 32KB 16KB 32KB 8KB

MPEG2 JPEG compress

20 30 40 50 60 70 80 90 100

jpeg
mpeg2

fft
dct

compress
fir 0

10

20

30

40

50

60

70

80

90

To
ta

l l
ea

ka
ge

 s
av

in
g

(%
)

Within-Die Sigma-Vth (mv)

Figure 11: Saving increases with technology scaling.

3.4 Leakage reduction by way-scaling

 Due to within-die variations, delays of the cells
differ from one another in a cache. Thus at design time,
target delay of the cache is set higher than the nominal
delay to achieve an acceptable yield. Thus, if SRAM
cell transistors are designed with a higher Vth, only
some (not all) of cells will violate the target delay, but
they will be randomly distributed over columns such
that conventional row/column redundancy techniques
are not practical. We propose to use spare cache-ways
to replace the now-delay-violating cache-lines in each
set (see Figure12).

Approach. For a given target yield and target delay of a
cache design, the required yield of each cell (i.e. the
probability that the cell meets the target delay) can be
computed. By adding each spare cache-way, this
required cell yield is reduced, and hence, nominal cell
delay can be increased without changing the target
cache delay or yield. We increase cell delay by
choosing a higher Vth and/or gate-oxide thickness (Tox)
at design time based on the number of spare ways.
Additional cache-ways, however, increase dynamic
energy per access, and hence, total energy does not
necessarily decrease.

Experimental Results. Table 2 shows the leakage
saving on a 16KB 4-way cache in a commercial 90nm
process; σ/μ represents the standard deviation divided by
the mean value of delay and N is the number of spare
ways. Figure 13 shows total dynamic and static energy
for different applications and same above L1 instruction
cache. In L2 caches, where leakage is more dominant,
this technique saves more energy; see Figure 14.

Table 2. Leakage reduction results using our technique
Cache leakage power (μW) Saving (%) Target

Yield
σ/μ

original N=1 N=2 N=1 N=2
3% 20.552 18.030 18.773 12.27 8.66 90% 5% 149.80 89.123 81.191 40.51 45.80
3% 21.592 18.619 19.209 13.77 11.0495% 5% 166.89 95.153 84.500 42.98 49.37
3% 24.501 20.014 20.171 18.32 17.6799% 5% 203.29 111.83 93.502 44.99 54.00

0

2

4

6

8

10

12

14

16

jp
eg

N
=1

N
=2

jp
eg

_o
pt

N
=1

N
=2

m
pe

g2
N

=1
N

=2

m
pe

g2
_o

pt
N

=1
N

=2 fft
N

=1
N

=2

fft
_o

pt
N

=1
N

=2

co
m

pr
es

s
N

=1
N

=2

cm
pr

s_
op

t
N

=1
N

=2

To
ta

l L
1

In
st

ru
ct

io
n-

ca
ch

e
en

er
gy

 (u
J) Dynamic Energy Static Energy 25.36%

23.65%

Figure 13: Results of L1 instruction-cache (16KB 4way).

0

2

4

6

8

10

12

14

jp
eg

N
=1

N
=2

jp
eg

_o
pt

N
=1

N
=2

m
pe

g2
N

=1
N

=2

m
pe

g2
_o

pt
N

=1
N

=2 fft
N

=1
N

=2

fft
_o

pt
N

=1
N

=2

co
m

pr
es

s
N

=1
N

=2

cm
pr

s_
op

t
N

=1
N

=2

To
ta

l L
2

U
ni

fie
d

I+
D

 c
ac

he
 e

ne
rg

y
(u

J) Dynamic Energy Static Energy

53.37%

44.56%

Figure 14: Results of unified L2 cache (16KB 4-way).

4 Core Logic Power Reduction
4.1 Multi-performance processor

Dynamic voltage scaling (DVS) is one of the most
popular approaches for reducing the energy
consumption of microprocessors. In past years, a lot of
DVS processor architectures have been proposed.
However, only a few of them are used in embedded
real-time systems. One major reason is that most DVS
processors involve large mass production cost including
test cost, design cost and the cost for on-chip DC-DC
converters. The other reason is a delay overhead for
dynamically changing the supply voltage and the clock
frequency. Reliability issue is also very serious for DVS
processors in latest process technology like 65nm
process. In our group, a new processor architecture
which can be used as a design alternative for the DVS
processors is proposed [7]. The processor core consists

Figure 12: a) Original, b) after applying our technique

a) Original b) After increase in Vth, Tox

way 1 way 2 way 1 way 2 Additional

Violating original cache delay cache-line meeting the
original cache delay

set 1
set 2
set 3
set 4

of multiple same-ISA PE-cores and resizable set-
associative cache memories as shown in Figure 15.
Speeds and energy consumptions of PE-cores are
different from each other. Only a single PE-core is
selected to run at a time and the other PE-cores are
deactivated by power gating and/or clock gating. The
change of the active PE-core can be completed within a
few clock cycles, which is suitable for the real-time
applications.

PE-core1
PE-core2
PE-core3 Resizable

As
so

ci
at

iv
ity

cache

Processor Core-1 Processor Core-2

PE-core1
PE-core2
PE-core3 Resizable

As
so

ci
at

iv
ity

cache
Figure 15: Muliple Performance Processor

In traditional DVS processors, a CPU core is
designed to correctly work for multiple voltage
conditions. In this case, critical path may be different
along supply voltage even in a same chip, meaning that
the DVS processor chip is not optimally synthesized for
each supply voltage. Therefore, it is less power efficient
than the dedicated processor core which is optimized
for a specific supply voltage. Unlike the conventional
DVS processors, our PE-cores are optimally designed at
the pre-silicon design phase for the specific supply
voltage using multiple Vth cells at the cost of chip area.
Thus, our PE-core is more power efficient. Our
processor has a 10X power scalability depending on the
operating voltage and the clock frequency of the active
PE-core and a cache associativity value. The power
consumption of the processor can be saved by
dynamically selecting the active PE-core and a cache
associativity value based on the criticality of the task
and the proximity of the deadline.

4.2 Synthesis results

Figure 16 shows pre-layout synthesis results of PE-
cores optimized for 0.52V, 0.68V and 1.2V voltage
supplies, respectively. A commercial 90nm CMOS
process technology and a Media embedded Processor
(MeP) of Toshiba Semiconductor are used for the
experiment. Our processor can be easily synthesized
using conventional synthesis flow without taking care of
multiple timing constraints which should be considered
in conventional DVS processor design.

 Figure 16: Pre-Layout Power Estimation Results

5 Conclusions
 We presented parts of the finished as well as on-
going research activities in the Circuits and Systems
group of Kyushu University. Our main focus is on
software-directed approaches to estimating and
reducing the energy consumption of embedded real-
time systems. As the demands of system integration,
performance, and power have pushed ASSP vendors
down to 65nm or 45nm, NRE (non-recurring
engineering) costs and design complexity have
increased significantly. A remedy for the NRE
explosion is to reduce the number of developments and
manufacture and sell tens of millions of chips under a
fixed design. In such a situation, embedded software
plays more and more important role than today. This
paper covered our approach for fast power estimation of
software on a given processor system, a number of
software-directed techniques for reducing energy
consumption of the memory subsystems and the logic
core of the embedded processor.

Acknowledgement
This work is supported by Toshiba semiconductor and
VDEC, the university of Tokyo with the collaboration
of Renesas Technology, STARC, Panasonic, NEC
Electronics, Toshiba, ROHM, Toppan Printing, Cadence
Design Systems, Synopsys and Mentor Graphics. This
work is also supported by CREST program of JST.

References
[1] D. Lee, T. Ishihara, M. Muroyama, H. Yasuura,
and F. Fallah, “An Energy Characterization Framework
for Software-Based Embedded Systems,” in Proc. of
ESTIMedia’06, pp.59-64, Oct. 2006.
[2] Y. Ishitobi, T. Ishihara, and H. Yasuura, “Code
Placement for Reducing the Energy Consumption of
Embedded Processors with Scratchpad and Cache
Memories,” in Proc. of ESTIMedia’07, Oct. 2007.
[3] T. Matsumura, Y. Ishitobi, M. Goudarzi, T.
Ishihara, and H. Yasuura, “A Hybrid Memory
Architecture for Low Power Embedded System
Design,” in Proc. of SASIMI’07, Oct. 2007.
[4] Y. Taur, and T.H. Ning, Fundamentals of Modern
VLSI Devices, Camrbidge University Press, 1998.
[5] M. Goudarzi, T. Ishihara, H. Yasuura, “A
Software Technique to Improve Yield of Processor
Chips in Presence of Ultra-Leaky SRAM Cells Caused
by Process Variation,” in Proc. of ASP-DAC’07, pp.
878-883, January, 2007.
[6] M. Goudarzi, T. Ishihara, and H. Noori,
“Variation-Aware Software Techniques for Cache
Leakage Reduction Using Value-Dependence of SRAM
Leakage due to Within-Die Process Variation," (to
appear) in Proc. of HiPEAC'08, January, 2008.
[7] Y. Oyama, T. Ishihara, T. Sato, and H. Yasuura,
“A Multi-Performance Processor for Low Power
Embedded Applications”, in Proc. of Cool Chips X, pp.
138, April, 2007.

3.11

31.49

3.78

32.91

4.44

34.32

5.11

35.74

10.11
11.0311.9412.86

0

15

30

45

0.52V, 100MHz 0.68V, 200MHz 1.20V, 400MHz
Operation Modes

Po
w

er
 C

on
su

m
pt

io
n

[m
W

] direct map cache
2-way cache
3-way cache
4-way cache

