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Abstract - Energy consumption is a fundamental 
barrier in taking full advantage of today and future 
semiconductor manufacturing technologies. We present 
our recent research activities and results on estimating 
and reducing dynamic and static energy under real-
time constraints in embedded systems. This includes 
techniques and tools for (i) estimating instantaneous 
energy consumption of embedded processors during an 
application execution, (ii) reducing energy consumption 
by optimally mapping functions and data items to the 
scratch-pad memory (SPM), the cacheable, and non-
cacheable memory regions of the processor memory 
space, (iii) reducing the energy consumption of SPM by 
partitioning it into two sections with different dynamic 
vs. static power dissipations, (iv) reducing leakage 
energy in instruction cache memories by taking 
advantage of value-dependence of SRAM leakage due 
to within-die Vth variation, (v) choosing higher 
threshold voltage and compensating the delay-violating 
cache-lines by additional cache ways, and (vi) reducing 
energy of the logic-part of processor cores by statically 
implementing multiple same-ISA cores with different 
energy and performance characteristics. 

Keywords: Embedded system, power estimation, 
power reduction, dynamic power, static power, scratch-
pad memory, cache memory, compiler optimization. 

1 Introduction 
There is a wide consensus that the energy 

consumption is a fundamental barrier in taking full 
advantage of today and future semiconductor 
manufacturing technologies.  We present our recent 
research activities and results in three categories: 
estimating software power consumption, reducing 
energy of the memory subsystem, and dynamically 
managing the energy of the logic core of the processor. 
Firstly, we present a technique to estimate instantaneous 
energy consumption of embedded processors during an 
application execution. We train a per-processor energy-
model which receives statistics from the processor 
instruction-set simulator (ISS) and gives the 
instantaneous energy consumption. Secondly, we 
reduce energy consumption by optimally mapping 
functions and data items to the scratch-pad memory 
(SPM), the cacheable, and non-cacheable memory 
regions of the processor memory space. Thirdly, to 
reduce the energy consumption of SPM, we partition it 
into two sections: one section favors more frequently 
accessed items by providing low-dynamic-energy 
SRAM cells, while the other section reduces leakage 

energy by using higher threshold voltage (Vth). Both of 
these sections can be accessed at the same latency, 
which makes it easy to integrate this SPM into off-the-
shelf processor IPs. Fourthly, in order to reduce energy 
of the logic-part of processor cores, we statically 
implement multiple same-ISA cores with different 
energy and performance characteristics. Power 
management software dynamically selects one of the 
cores based on the criticality of the task and the 
proximity of the deadline. Fifthly, we reduce leakage 
energy in instruction cache memories by taking 
advantage of value-dependence of SRAM leakage due 
to within-die Vth variation. We propose techniques to 
better match the instructions to the less-leaky state of 
their corresponding cache cells. Finally, we reduce 
leakage energy of caches by using higher Vth. Since a 
few cache-lines will then violate the original cache 
access latency due to the within-die delay variation of 
SRAM cells, we replace them with one/two redundant 
cache-ways so as to keep the cache capacity, latency, 
and yield intact. 

 In the rest of this paper, in Section  2 we present the 
instantaneous power estimation technique. Section  3 
provides various techniques to reduce power 
consumption of the memory subsystem and Section  4 
presents our technique for power reduction of the core 
logic part. Finally, Section  5 summarizes and concludes 
the paper. 

2 Software Power Estimation 
This section shows an overview of our energy 

characterization tool which helps designers in 
developing a fast and accurate energy model for a target 
processor-based system. We use a linear model for 
energy estimation and find the coefficients of the model 
using multiple linear regression analysis. For more 
detailed information of our tool see  [1].  

2.1 Energy Characterization 

The energy consumption of a processor can be 
estimated using the following linear formula, 
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where Pi’s, ci’s and N are the parameters of the model, 
the corresponding coefficients and the number of 
parameters, respectively. The first step for the modeling 
is to find Pi’s required for estimating the energy 
consumption of the target processor system. The Pi’s 
should be parameters whose values can be easily 



obtained using a fast simulator like an ISS. For example, 
Pi’s can be the number of load and store instructions 
executed, the number of cache misses, etc. Once the 
required set of parameters is obtained, the next step is to 
find a training bench for the energy characterization. 
Note that the number of cycles simulated for the training 
bench is much smaller than that for target application 
programs. In our tool, the generated training benche is 
simulated only about 500,000 cycles while the full 
simulation of the target application programs needs 
bilions of cycles. More detailed explanation for our 
method to generate the training bench is presented in [1]. 
The final step is to find the coefficients, ci’s 
corresponding to the Pi’s. This is done by using multiple 
linear regression analysis. The energy consumption 
Eestimate is then calculated using Equation (1). Figure 1 
shows an overview of our energy characterization flow. 
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Figure 1 : Overview of Energy Characterization 

To obtain the reference energy values, we simulate the 
processor system at gate-level for a fixed number of 
instructions. We refer to this number of instructions of 
test sequence as the instruction frame. The width is the 
same for all instruction frames as shown in Figure 2. 
Since we perform gate-level simulation and calculate the 
energy consumption values for all instruction frames, 
this step is time-consuming. However, it needs to be 
done only once for the characterization.  
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Figure 2 : An Example of Instruction Frame 

 We, next, obtain an instruction trace for each 
application program using an instruction-set simulator. 
The traces are divided into small segments 
corresponding to instruction frames. Pi’s should be 
parameters that can be easily extracted from instruction 
traces. For a set of Pi’s, we find coefficients which 
minimize Σ|Eestimate(i)−Egate-level(i)|, where Egate-level(i) and 
Eestimate(i) are the energy consumption values obtained 
by gate-level simulation and Equation (1) for the i-th 
instruction frame, respectively. 

2.2 Debugger-based power estimation 

Once the energy model is developed, the energy 
consumption of software running on the processor 
system can be estimated using a cycle-inaccurate 
instruction-set simulator (ISS) with the speed of 
300,000 instructions per second. We use our tool for 
characterizing the energy consumption of two 
commercial microprocessors with their on-chip caches 
and an off-chip SDRAM. The accuracy of our method 
is very good as shown in Figure 3. Experimental results 
using three benchmark programs demonstrate that the 
error of our technique is on an average 3% compared to 
the gate-level estimation results.  
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Figure 3: Results for JPEC encoder run on M32R-II 

Today’s SoC chips are usually implemented with 
off-the-shelf processor IPs. Even for those SoC chips, 
our method can accurately model the energy 
consumption since our tool does not need to know a 
detailed internal architecture of the target processor. 
Another key point of our method is that it works very 
well even with a cycle-inaccurate simulator like a GNU 
debugger which is a de facto standard of software 
debugger. This helps compilers or programmers to 
customize software codes to meet customers’ needs for 
low power.  

3 Memory Power Reduction 
3.1 Code and data placement 

This section addresses our code placement technique 
for reducing the total energy consumption of embedded 
processor systems including a CPU core, on-chip and 
off-chip memories. The overview of our technique for 
optimizing the code placement is shown in Figure 4. 
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Figure 4: The Flow of Code Layout Optimization 



We first extract hardware dependent parameter 
values like the energy consumption and clock cycles 
required for memory accesses using a target cell ligrary 
and a netlist of the target processor. Instruction and data 
address traces for a target application program can be 
obtained using instruction-set simulator (ISS). Then, 
our code placement algorithm simultaneously finds the 
optimal code allocations for a scratchpad memory, a 
cacheable memory region, and a non-cacheable memory 
region using these previously obtained hardware and 
software characteristics. Note that the code and data 
allocation is fixed at a compile time and is not changed 
at run time. For more detailed information of out code 
placement algorithm, see  [5].  

 Figure 5 shows the energy consumption and 
performance results for compress. Left and right sides 
of each figure show results for 16kB and 8kB 4-way 
caches, respectively. 16kB, 8kB and 4kB scratchpad 
memories are examined as well. Vertical bar charts and 
straight lines represent the energy consumption and the 
number of cycles executed, respectively. The following 
five approaches are compared.  

♦ ORG:  Given benchmark programs are compiled 
with –O3 option. Every functions and data objects 
resides in a cacheable region in this case. 

♦ CHE: Locations of functions and data objects are 
optimized using a conventional code placement 
technique. Scratchpad memory is not used in this 
case. 

♦ SPM: Functions and data objects are relocated to a 
scratchpad memory using a conventional technique 
which maximizes the number of SPM accesses.  

♦ CBN: Locations of functions and data objects are 
modified by applying CHE just after applying SPM. 

♦ OUR: Locations of functions and data objects are 
optimized by our algorithm. 
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Figure 5: Optimization Results for Compress 

Those results are obtained using a commercial 
embedded processor (SH3-DSP) and an off-chip 
SDRAM (Micron). As one can see from the results, the 
energy consumption of any benchmark program 
optimized with our approach, OUR, is always the 
smallest of all. If we employ a large scratchpad memory 
on a chip, the object code optimized with SPM or CBN 
consumes higher energy than that optimized with CHE. 
This is because the scratchpad-based compile-time 
memory is less energy efficient than the cache-based 
run-time memory if the scratchpad memory size is 
larger than the cache memory size. In this case, CHE 

outperforms SPM and CBN in terms of energy 
consumption. However, the object code optimized with 
CHE needs more execution time than that optimized 
with SPM or CBN. In many cases, our approach is 
better than the best result obtained with the other 
approaches in terms of both energy consumption and 
execution time. More specifically, for the processor 
with 8KB 4-way set-associative cache and 16KB 
scratchpad memories, our algorithm reduces the energy 
consumption of the processor system by 23% without 
any performance loss. For the 8KB 4-way set-
associative cache and 4KB scratchpad memories, the 
result of our approach is 10% smaller in energy 
consumption and 6% faster in execution time compared 
to the best result obtained by the conventional approach. 
Our future work will be devoted to extend our current 
algorithm to find a memory configuration and the best 
code layout for them concurrently. 

3.2 Hybrid SPM design 

 On-chip memories generally use higher supply (VDD) 
and threshold (Vth) voltages than those of logic parts to 
suppress the static power consumption without 
increasing the access latency of the memories. This 
design policy, however, increases the dynamic power 
consumption since it is quadratically proportional to the 
VDD. This section presents a hybrid memory 
architecture which consists of the following two 
regions; 1) a dynamic-power conscious region which 
uses low VDD and low Vth and 2) a static-power 
conscious region which uses high VDD and high Vth. 
The key of our architecture is that the access latencies 
for the two regions are equal to each other, which eases 
to integrate our memory into processors without major 
modifications of the internal processor architecture [3]. 
We can save the total power consumption by gathering 
the memory accesses to the dynamic-power conscious 
region as shown in Figure 6. 

 

Figure 6: Code and Data Allocation for Hybrid Memory 

Suppose we have two types of SRAM modules as 
shown in Table 1. DP and SP represent dynamic-power 
conscious implementation and static-power conscious 
implementation, respectively.  

Table 1. Delay and Energy Specifications of SRAM 
SRAM 
type 

VDD 
[V] 

Process 
option 

Delay 
[ps] 

Leakage/
cell [nW] 

Dynamic 
Energy [fJ]

DP 0.75 HP 197 9.27 78.1
SP 1.2 MP 198 6.71 272.0
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Note that the values in Table 1 are obtained from SPICE 
simulation for our original SRAM modules designed 
with a commercial 90nm process technology. In this 
process technology,  two process options, HP and MP, 
are provided. Device parameters like Vth and Tox (i.e., 
gate oxide thickness) in the HP option are chosen for 
improving performance of the circuits. On the other 
hand, the paremeters in the MP option are chosen for 
low power design.  

Once the delay and energy specifications of SRAM 
modules are obtained, the next step is to find code and 
data allocation. Our algorithm proposed in [3] finds the 
sizes of two regions and code/data allocations to the 
regions concurrently so as to minimize the total energy 
consumption of the hybrid scratchpad memory. 
Experiments using three benchmark programs, JPEG 
encoder, MPEG2 encoder, and compress, demonstrate 
that our technique reduces the energy consumption of 
the hybrid memory by 49% at the best case compared to 
the normal scratchpad design (see Figure 7). 

 

Figure 7: Power estimation results for hybrid memories 

3.3 Leakage reduction by value control 

Random Dopant Fluctuation (RDF)  [4] within the 
same die results in changes in the Vth of transistors. 
Transistors of cache SRAM cells are more affected 
since they have minimal physical channel area. The 
mismatch among Vth of transistors of a single SRAM 
cell results in different leakage currents depending on 
the value stored in the cell. Thus leakage of the cache 
memory can be reduced if the values with less leakage 
can be more often stored in each SRAM cell. We 
propose techniques to reduce instruction-cache leakage 
using this phenomenon. 

Value-Dependence of SRAM Leakage. When the 
SRAM cell is storing a 1 (Figure 4) only three 
transistors contribute to the total leakage (M1, M2, M5); 
when storing a 0, the other three transistors leak [5].  

 
 Figure 8: Different transistors leak based on cell value 

 Since subthreshold leakage exponentially depends on 
Vth, total leakage can be significantly different in the 
two states. Figure 9 shows that at 60mV variation in Vth, 
this difference is 57% averaged over cells of 1000 
16KB caches. Moreover, the difference between the 
lowest and the highest total leakage of the cache 
memory is 70% on an average.  
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Figure 9: Leakage difference in 16KB caches. 

Our Approach. We propose three techniques: 
(i) instructions within a basic-block can be rearranged 
(subject to dependency among them) to better match 
their corresponding SRAM cells in the instruction cache, 
(ii) register operands can be statically renamed to 
further improve the matching, (iii) unused lines of the 
cache can be initialized by their minimum-leakage value. 
By offline testing, the less leaky state of each SRAM 
cell is determined. Then, (i) and (ii) above are applied to 
the binary executable of each application. The third 
technique (cache initialization) is done at processor boot 
time. 

Experimental Results. We applied the technique on six 
embedded benchmarks compiled with no compiler 
option for M32R processor. Figure 10 shows the 
leakage power breakdown to that of used and unused 
cache lines before and after applying our techniques 
when the standard deviation of within-die Vth variation 
is 60mV. The results show that the leakage power can 
be reduced by 54% at the best case compared to the 
results of a cache memory which does not use our 
technique. Results are averaged over 1000 simulated 
8KB direct-map caches. At higher variations resulting 
from technology scaling, the saving increases (Figure 
11). For further details see  [5]. 
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Figure 10: Average leakage on 8KB direct-map caches 
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Figure 11: Saving increases with technology scaling. 

3.4 Leakage reduction by way-scaling 

 Due to within-die variations, delays of the cells 
differ from one another in a cache. Thus at design time, 
target delay of the cache is set higher than the nominal 
delay to achieve an acceptable yield. Thus, if SRAM 
cell transistors are designed with a higher Vth, only 
some (not all) of cells will violate the target delay, but 
they will be randomly distributed over columns such 
that conventional row/column redundancy techniques 
are not practical. We propose to use spare cache-ways 
to replace the now-delay-violating cache-lines in each 
set (see Figure12). 

Approach. For a given target yield and target delay of a 
cache design, the required yield of each cell (i.e. the 
probability that the cell meets the target delay) can be 
computed. By adding each spare cache-way, this 
required cell yield is reduced, and hence, nominal cell 
delay can be increased without changing the target 
cache delay or yield. We increase cell delay by 
choosing a higher Vth and/or gate-oxide thickness (Tox) 
at design time based on the number of spare ways. 
Additional cache-ways, however, increase dynamic 
energy per access, and hence, total energy does not 
necessarily decrease.  

Experimental Results. Table 2 shows the leakage 
saving on a 16KB 4-way cache in a commercial 90nm 
process; σ/μ represents the standard deviation divided by 
the mean value of delay and N is the number of spare 
ways. Figure 13 shows total dynamic and static energy 
for different applications and same above L1 instruction 
cache. In L2 caches, where leakage is more dominant, 
this technique saves more energy; see Figure 14. 

Table 2. Leakage reduction results using our technique 
Cache leakage power (μW) Saving (%) Target 

Yield 
σ/μ 

original N=1 N=2 N=1 N=2 
3% 20.552 18.030 18.773 12.27 8.66 90% 5% 149.80 89.123 81.191 40.51 45.80
3% 21.592 18.619 19.209 13.77 11.0495% 5% 166.89 95.153 84.500 42.98 49.37
3% 24.501 20.014 20.171 18.32 17.6799% 5% 203.29 111.83 93.502 44.99 54.00
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Figure 13: Results of L1 instruction-cache (16KB 4way). 
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Figure 14: Results of unified L2 cache (16KB 4-way). 

4 Core Logic Power Reduction 
4.1 Multi-performance processor 

Dynamic voltage scaling (DVS) is one of the most 
popular approaches for reducing the energy 
consumption of microprocessors. In past years, a lot of 
DVS processor architectures have been proposed. 
However, only a few of them are used in embedded 
real-time systems. One major reason is that most DVS 
processors involve large mass production cost including 
test cost, design cost and the cost for on-chip DC-DC 
converters. The other reason is a delay overhead for 
dynamically changing the supply voltage and the clock 
frequency. Reliability issue is also very serious for DVS 
processors in latest process technology like 65nm 
process. In our group, a new processor architecture 
which can be used as a design alternative for the DVS 
processors is proposed [7]. The processor core consists 

Figure 12: a) Original, b) after applying our technique 

a) Original b) After increase in Vth, Tox

way 1 way 2 way 1 way 2 Additional

Violating original cache delay cache-line meeting the 
original cache delay 

set 1 
set 2 
set 3 
set 4 



of multiple same-ISA PE-cores and resizable set-
associative cache memories as shown in Figure 15. 
Speeds and energy consumptions of PE-cores are 
different from each other. Only a single PE-core is 
selected to run at a time and the other PE-cores are 
deactivated by power gating and/or clock gating. The 
change of the active PE-core can be completed within a 
few clock cycles, which is suitable for the real-time 
applications. 
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Figure 15: Muliple Performance Processor 

In traditional DVS processors, a CPU core is 
designed to correctly work for multiple voltage 
conditions. In this case, critical path may be different 
along supply voltage even in a same chip, meaning that 
the DVS processor chip is not optimally synthesized for 
each supply voltage. Therefore, it is less power efficient 
than the dedicated processor core which is optimized 
for a specific supply voltage. Unlike the conventional 
DVS processors, our PE-cores are optimally designed at 
the pre-silicon design phase for the specific supply 
voltage using multiple Vth cells at the cost of chip area. 
Thus, our PE-core is more power efficient. Our 
processor has a 10X power scalability depending on the 
operating voltage and the clock frequency of the active 
PE-core and a cache associativity value. The power 
consumption of the processor can be saved by 
dynamically selecting the active PE-core and a cache 
associativity value based on the criticality of the task 
and the proximity of the deadline. 

4.2 Synthesis results 

Figure 16 shows pre-layout synthesis results of PE-
cores optimized for 0.52V, 0.68V and 1.2V voltage 
supplies, respectively. A commercial 90nm CMOS 
process technology and a Media embedded Processor 
(MeP) of Toshiba Semiconductor are used for the 
experiment. Our processor can be easily synthesized 
using conventional synthesis flow without taking care of 
multiple timing constraints which should be considered 
in conventional DVS processor design.  

 Figure 16: Pre-Layout Power Estimation Results 

5 Conclusions 
 We presented parts of the finished as well as on-
going research activities in the Circuits and Systems 
group of Kyushu University. Our main focus is on 
software-directed approaches to estimating and 
reducing the energy consumption of embedded real-
time systems. As the demands of system integration, 
performance, and power have pushed ASSP vendors 
down to 65nm or 45nm, NRE (non-recurring 
engineering) costs and design complexity have 
increased significantly. A remedy for the NRE 
explosion is to reduce the number of developments and 
manufacture and sell tens of millions of chips under a 
fixed design. In such a situation, embedded software 
plays more and more important role than today. This 
paper covered our approach for fast power estimation of 
software on a given processor system, a number of 
software-directed techniques for reducing energy 
consumption of the memory subsystems and the logic 
core of the embedded processor. 
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