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1. Introduction.

Reports of Research Institute for Applied Mechanics
Vol. II, No. 8 December, 1953

ON A METHOD OF SOLVING TORSION AND
BENDING PROBLEMS OF CONTINUOUS
PANEL STRUCTURES. (ZND REPORT)

By Shosaburo NEGORO

In the 1st report we have treated the general solution of the torsion
and bending problems of continuous panel structures under transverse
forces, twisting and bending moments, the members of which cross each
other perpendicularly and distributions of the external forces acting on
the members are quite arbitrary and positions of the supported bars are
also arbitrary.

In the present report, we extend the method described in the 1st report
to the problems of the structures, the members of which cross each other
with angles different from rectangle. That is to say, the rotating angle
being regarded as a vector as well known when the value of its angle is
small, we can decompose the unknowns, say the twisting and bending
moments and the rotating angles occurring at the intersecting points of
the members, to the two directions of rectangular axes respectively, the
directions of which we take in the directions of the axis of the member
and the perpendicular to the member at the each point. By doing so, as
to the decomposed quantities stated above, we can treat in the same man-
ner as the method described in the 1st report. Thereupon, similarly as
in the previous report, we induce also the simultaneous equations of
the first degree referring to the inclinations and deflections at the inter-
secting points of the members, the number of which is the same as that
of the unknown quantities. The simultaneous equations of this type
can always be solved by means of the iteration methods practically and,
moreover, using these quantities obtained above, all the unknowns in
the present problems can be easily found from the formulae of bending
as well known in the 1lst report.
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In this report as mentioned above, we treat the general
solution of the torsion and bending problems of the continuous panel struc-
tures under transverse forces, twisting and bending moments, the members
of which cross each other with angles different from right angle and the
distributions of the external forces acting on the members are quite arbi-
trary and positions of the supported bars are also arbitrary. First, under
the assumptions that the deflections and the twisting angles of the mem-
bers are small, we decompose all the unknowns, say the twisting and bend-
ing moments and the rotating angles experienced at the intersecting points
of the members, to the two directions of the rectangular axes, the directions
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of which we take in the directions of the axis of the member and the per-
pendicular to the member at the each point. Thereupon, similarly as in
the 1st report, considering the conditions of continuity of the inclinations,
equilibriums of the twisting and bending moments, and equilibriums of
the shearing forces at the intersecting points of the members as to the de-
composed quantities stated above, the present problems reduce to the simul-
taneous equations of the first degree referring to the twisting and bending
moments and the deflections at the intersecting points of the members and
the number of the simultaneous equations is the same as that of unknown
quantities and these equations suffice to define one set of the unknown
quantities and, moreover, finding the solution of the equations, the problems
are solved. But, for solving the simultaneous equations practically, we
need the iterations methods as well known. Then, for the convenience of
practical calculations, we induce the type of the simultaneous equations
of the 1st degree referring to the inclinations and the deflections at the
intersecting points.

2. Notations, First, let us show the notations used in the present
report altogether for the convenience of explanation.
F,M,T,i, ¢, .. Shearing Force, Bending Moment, Twisting Moment, In-
: clination, Twisting angle, Deflection.

E, C, I.: Young’s Modulus, Torsional Constant, Moment of Inertia.
mark (—): Direction of the outward-drawn normal of a cross-section.
suffix (0): The value at the starting point.
suffix (¢): Distance apart infinitesimally small quantity from the

intersecting point.
suffix (s): The suffix s attached on the left side relates to the two
cross members (1, 2), and the suffix s on the right side
stands for the numbers (0, 1, 2 and 3).
P, M’s, R.: External force, External Bending Moment, Reacticn.
!, A, h.: Length of a span, Cross-sectional area, Length of a sup-
ported bar.
Oners Ly, Nporo Angle different from right angle at an intersecting point
(n, ) of the members, Cosine and Sine of the angle 0,.,.
v(x), M(x): Accumulation functions of exteral forces and bending

moments.
@

Vs(x) = as(x) ) B-!—l(x) ’ as(x) = j (x - t)s dv(t) ’

Bs(x) = J (x — 1) dM(),

0
T

Us(x) = 1s(x) + s 0s—1(%), 71:(x) = j tsdv(t),
0

0(%) = J t* dM(t),

0
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V(D), U(l): V1), U l) without the effects of the external forces
including the external bending moments, which act on
a member at both the ends.

Hereupon, let us show the relations among the suffix used in all the fol-
lowing notations.

(s=1lig=n+1.7 q':n—]_.r), (s =2: q=n-r+1, q’:n-r—l)
and in such cases when p joins the above suffix
(s:]‘:p:2’ q:n'r','l; q':n'f—l),
(s=2:p=1Lqg=n+1-7,9¢'=n—-1-7).
Ay = @i—30/l, 4= (1 —y)/l2,  sdYnr = Dnor — Yo )] sbner
sd sbner = sdYnor — sd¥q, sd stinr = sdYnor — sdYq,
(4, 4")s[i, By Qner = (T 0, sec 0)yr 578, B, Qnur — (Tq 0, sec0),s[i, B, Qly,
B, =p (2 M——> - M*—) , B'i=m{2 Ml—:e - M;-—e) + 2 Myye — M2-)},

IBn-r = 1lhner (2 IM—-> - 1M<—~—— ), ZBn-r = allner (2 2M e 2M 4_.__) ’

o n—1+4ger ner—g ner—1+e
1B ner = 1lnrr {2 1M—> r— 11\{7:1—;-r + 1Mo — 1 Mpt1-e.)},
2B'ner = sthnorr {2 zM A zMn?_H—e‘i' @ Myrte — 2:Myrr1-0)3,

Qi =m {2V + rﬁVz(U —Vs(l)}

Q= m {20 )+—Uz(l) U(l o}
oy = [,4{ V(L) + V A1) — 5(1)}] . w=1/6EI, 1=1/GC,
Q= [ f-20:00 + ] U1y - L0} ]

. I, I,
@n-r = l[[71 (lnr)/lnr + I_fl(lq)/lq—] + z[ﬁl (ln-r)/ln'r + _171([‘1)/111] + Pn"‘ 4

an.T = s[inor "l‘ 2 iq’] ] apn-r': 8[2 Z.n-r + iq':l ) $D por — [Utl(l) U)lgl) >

R

afnw:sKn-r"i‘qu” (s=1:¢"=n—¢c-r,s=2: q’'=n-r—c¢),

V.l Vil
SSn.r = [-—- _»Q + _i(ﬁg ,
s I 12 ey

$Snr = sSnr + My (s=1:¢"=n+e.7,5=2:q¢"=n-r+e),

U.(1) U:(H V l Vil
Klnr= s[ zl(z 2_’15—] ’ sS,/ = [ 1(2 ) + 2 -{lg—)J ,
ner s q

Sal = 2 [ y .?a‘l = 2 [#J ) a/: a/l ) a”: a/lZ,
s q
G

GC 1 C
- 5L e 5L
o1 Ln rp l ner o Lq’ » l ner
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ne g [5) wee 2 ]
Lqp l 7 Lwrp l q,
N GC N GCT7
o= (1) L1 L o= (), 5]
w= (1), [, =), [7]
L.a’s l n—r’ L ner § l q
and so on,
3. Formulae of Bending. First, for the conveniene of explanation, we

show the formulae of bending obtained in the Ist report as follow.

The formulae of bending:
——F_,:FT—f-VU(x), M,=-M_+ F_x+Vi(x),
4 ) x 0 (]
. . 1 1
EIlLi =EI£0—M<_x+—F<_x2+—Vz(x),
) 270 2
1

EIy=EI(y+ivx) —»%ngu 6

0 6

and from the Egs. (8. i), we have
i1 = 4y + B+ Q., = Ayl”‘]‘ B/+ @/

and

Fo= SEIG iDLt 20030 = 5Va0) + 5V

M= EEl@i v id i+ 3Gi-0) -

F. = —% ot 20 b+ 2000 =30} ~ l—?;Uz‘(ll) + 723Ua<h)

M= Bl 200 1+ 800 —y0) + LT — 5T
or

0

Il

[}

Va(l) + l_llzv:f(li)

F.= {M? + M‘E — ViDY i, F: = —{M-l» + M((T — ViDL

{MT + M<(7 + DDy

G.1D

(3.2)

(3.3

(3.3)

4, Fundamental principle of the theory. As stated above, the rotating
angles, say deflections of the members of the panel structures, being small
in the present problems, vector analysis can be applied for its angles as
well-known. Then we decompose the unknowns, namely the twisting and
bending moments and the rotating angles of the members taking place at
the intersecting points of the members, to the two directions of the rect-
angular axes respectively. If so, as to these decomposed quantities, we are
able to treat in the same manner as the method stated in the 1st report.
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Thereupon, let us take x- and ¢-axes in the "
two directions of the members at the intersect- s
ing point (# - 7) and z- and £-axes in the two %, 3
directions of the perpendiculars to the formers % c
and y axis in the perpendicular to the z-x mem;;r x
plane and, moreover, express the angle between
x- and &-axes by the notations 0,.,.

If so, we have the following relations be-
tween the axes (§, ¢) and the axes (¥, z) from Fig
the formulae of the analytical geometry.

§=Lix+ N,z
C:Lgx-I“NzZ:—‘ij—f-L[Z

Now, let us first consider the equilibriums of the moments at the inter-
secting points (» - 7).
Putting the twisting and bending moments referring to the ¢ axis

b,

2M — + ZM - + 2]M-n-7'5E Mf }
nerte Ner—g
21 s+ T =Ty,
ner+e ner—g
we have the following quantities referring to the x- and z-axes.
IWQ'Ln.T:Mw, ME 'Nn-T: _Mz }
T§ * Ly =T, ’ Tg « Npop = T,

in which Ly.,, N, are direct cosines of the ¢-axis for the x-and z-axes.
Therefore, from the conditions of the equilibriums of the moments, we have

My + M + Ly T — + 2T )
ner+e

ntger n—ger ner—g
- Arn-r (ZM —— + 2M —— + ZMz.r) + 1A1n.r = 0
nerte ner—g
“4.2)
17— + 1T + Nuo T 5 4T )
Nteer N—Cer nerte Ner—¢

+ Lyp.r GM = 4+ M 4+ My.,) =0.
nert+e ner—e

Similarly, as to the twisting angles and the inclinations of the members
at the intersecting points (2 - #) ,we have
(2(0 ¢ L)n'r = (‘ﬂzol)n-r; (2‘? . N)nor = (Q"w-])n-r }
(Zi . L)nw‘ = (‘sz)n-r ’ (ZZ . N)nr = (—¢z~2>n-r .
Therefore, the twisting angle and the inclination referring to the x-member
are expressed by
19ner = (20 * Ny + (o« LIy 1lner = @ + L)jor — Gf - NDper
and the twisting angles about the x-and ¢-members at the points (# - #) are

1 . .
W = 7 (N -1+ 2Dner
ner

1 (4.3)
2Pner = Z— (& + N oidners

ner
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On the other hand, as to the relations between the inclinations and the
moments, we can also take the following equations described in the 1st
report without any modifications

slnr = s[4y + B + Qln.r. (4.32)

Then from the Egs. (4.3;) and (4.3:;), the relations between the twisting
moments and the twisting angles are expressed by

1L — Pn-1r] = 1[dnr T—— 1 = 1[Ap T ]

n—1+er n—ger
A i+ 4 1B+ 4 1Q 1y +1[d" 28+ 4" 2B+ 4" 2:Q1nr
2[xn-r T —-—»] =2 Hnr T _, ]

ner—1+e Ner—e

od” i+ 4" B+ 4" 1Q 4 2[4 2i + 4 2B+ 4 2Q .

Il

4.4

Il

2[¢n-r - (On-r—l]

1l

Next, similarly, as to the conditions of the continuity of inclinations
and the equilibrium of the shearing forces, the relations stated in the 1st
report are also applicable to the present problem without any modifications.

That is to say, from the conditions of the continuities of the inclinations

sldst’+ B+ B+ Q4+ Q'] =0 4.5)
and from the conditions of the equilibriﬁms of the shearing forces

—'Rn-r = l[(M——» + M. )/ln-r - (M———> -+ M )/lq]
N—ge7 n—14¢gr nt1—ger nteer

(4.6)
o (M s+ M e Dlpy— (M —s + M ]I+ Oy
Nor—8 ner—1+e ner+l—g nerte

Further, the supported bars being elastic and the forms of the cross-sections
being uniform, we have

Ynr = —[AR|E Aln.r 4.7)

for the relations between the reactions and the deflections and, moreover,
the bars being approximately regarded as a rigid bodies

En.r‘_)m, ynq‘#O. (4' 72)

Here, having the supported bar at the intersecting point (#.7#), we
have one independent equations as to the moments and the deflection by
considering the Egs. (4.6) and (4.7) together and having not a supported
bar at the point, the Egs. (4.6) is an independent relation as to the mo-
ments.

After all, in the present problems, the Egs. (4.2), (4.4), (4.5), and (4.6)
are the fundamental equations, corresponding to these in the 1Ist report
and these equations are also the simultaneous equations of the 1st degree
with the 9 unknown quantities and same number of the equations.

Next, let us consider the above relations at the intersecting points on
the boundary frame.

(a) In such cases when the intersecting points (# . #) are on the bound-
ary members.
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In these cases, first, we have the following boundary conditions:—

(r =max): [F —, M ., T _]1=0,

nerte Ner-t+e nerte
(r = min): o[F —, M _, T . ]1=0,
Ner—=¢ Ner—8 Ner—¢
(n =max.): ,[JF— , M., , T ., 1=0,
nteer NtET nteer
(# = min.): [Fee , M- , Tc. 1=0,
N—E+7 N—ET N—ET
((n-7) =max): (F—s , M, , T, 1=0,
nteer nteer nteer .
oF —, M _,, T _:e]zo,
rte n+r+e Nt
~ (4.8)
(-7 =min): ([F_ , M , T 1=0,
N—Ee7 N—E7 N—8+7 :
J[F e, M -, T 1=0,
Ner—¢ Ner—E8 Neyr—8
(# = max., ¥ = min.): [F—, , M-, , T, 1=0,
NAEr neger nteger
2EF “—— M(——, T(__]:O’
Ner—eg Rer—E¢ Ner—E8
(# = min,, » =max.): ;[Fe— , M. , T 1=0,
N—ger N—Ee2 N—E1

JF ., fi _,, T _,]1=0.
Nerte nerte ner+e
Thereupon, similarly as the 1st report, applying the above relations to the
previous fundamental equations and considering that the equations referring
to the fictitious members do not hold, we have also the simultaneous equa-
tions consisting with the same number of the linear equations as that of
the unknown quantities at these intersecting points, if we consider all the
cases together.
(b) In such cases when the ends (% .7) of the members are built in
the frame.

In these cases, as well known, having always the boundary conditions
sber = 0, §sPper = Oy Ynr =0, (4~ 9)

the fundamental equations are as follows.
(i) case 7» =max. or min,:—
In these cases, first, we have the Egs. (4.9) and the 1st or the 2nd of

the Egs. (4.8) for the boundary conditions.
Then, from the Egs. (3.2)
y1l~r—1/21n~r =o[B + Qlur (r = max.) }
Yot thnotr = 2[B'+ Q' 1oy (r = min.)
and from the Egs, (4.2)

M o+ M A+ My]=0, T —+7T <1=0

nrte Ner—8 nerte Ner—¢

(7 = max, or min.).
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Moreover, from the Egs. (4.4)

—2@Pper—1 = 2[17&-1' T —*-—)] = 2[11&-7‘ T ———J

ner—1te ner—g
= —{(sec O pr—1 1[4y + B + Qlpr—r + (T 0nr—1 204y + B + Qlup—1}
(» = max.)
and from the Egs. (38.3,)
—Ry.r = 2Fn = = [{[M[n - + ]u-n T + U[ Une )Y ner] (7 = max.) W

“‘Rn~r = ZF — = ’[{M —_— + M «— Vl (ln r+1)}/ln r-H-} (7' = min-) j

Ner+e Nertl-—=¢ +e

That is, these equations stated above are the fundamental equations for
the present cases and these are also the simultaneous equations of the 1Ist
degree with the 8 unknown quantities as to the moments and the same
number of the equations, if we consider both the cases together.
(ii) case # =max. or min.:—

In these cases, we have the Egs. (4.9) and the 3rd or the 4th of the
Egs. (4.8) for the boundary conditions.

Then, from the Egs. (3.2)

Yo-terftdner = 1[B + Qln.r (# = max.)’ }
Ynerr[tIntrr = 1 [B'+ Q@ lnr (# = min.),

and from the Egs. (4.2)

1My +M +My,]=0, (T-- +T- 1=0 (# =max. or min.).

Nnteer N—_ger NtET N—Eer
Moreover, from the Egs. (4.4)
—1@n—1.r = I[Anw‘ T_..,., ] = ltjnor T——-> ]

n—14gr n—ger
= —{(Tg0n-1r1[4y + B + Qlp-1.r + (seC 0p—1.r 2[4y + B + Qly-1.}
(7 =max.)
and, from the Egs. (3.3;)
~Rpw=1Fc_ = [{M_s +Mc__ + U Un)} lns)
N—ger n—ger n—1tgr
(# = max.)
""Rnor = ]F__., = l[{]‘/f_—_—y —1‘ M<—— - Vl (ln-l—l 'r)}/ln-H LY
Nteger nt1—ger
(n = min.)

That is to say, similarly as the case (1), the equations stated above are
the fundamental equations for these cases and these are also the simulta-
neous equations of the 1st degree with the 8 unknown quantites as to the
moments and the same number of the equations, if we consider both of
the cases together.

In conclusion, the above descriptions tell us that we have as many equa-
tions of the forms of the fundamental equations as the intersecting points
(n . 7) of the members of the structure and the simultaneous equations of
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these equations are consisted with the same number of linear equations as
that of the unknown quantities s(M, T, ¥)..» at all the intersecting points.
Then, similarly as in the 1st report, the present problems are solved, pro-
vided that we find the solution of the simultaneous equations. It is, how-
ever, practically impossible to obtain the solutions of the equations by
usual method of employing the determinant, as the number of the unknown
quantities is too large in general, so that the well-known iteration methods
are needed for solving the equations practically.

Hence, for the convenience of the actual calculation, we rewrite the sim-
ultaneous equations with the unknown quantities (s, ¥ ). as to the incli-
nations and the deflections at the points (# - #) instead of the previous
fundamental equations in a form more convenient for our purpose.

First, from the Egs. (3.3), we have

II‘L-_'.—8 = 1 [M—_':; + Mn+e-r] = l[az(r«, + 3 Ay'w) -+ Sq] ’
IM——> = —1[612 (1_'«1 + 3Ay'n~r> -+ S-q]
nteer
M, = ‘—J[:Me—— + Mn—l—l—e-r] = ([a2 (Pq'+ 343”%4‘) + Kq] ’
ntl—ger nt+l—ger
WM = —1[as (T + 3 49"5r) + K]
nt1—ger (4 9)
2M —~— = '—‘J.[M — + fwnq'-te_,l = ‘Z[:a'.’. (n; + 3 Ay,nnr) + Sq ) ’
nerte nerte
oM pore = —sla; (I, +3 Ay,nor) + gq]
nerte
M = —i[M  + Mpyri—e) = o[a:(T/+ 3 49" + K1,
ner+l—g ner+l—¢
2M <—+1—— = _ZEaZ <E1’+ 3 Ay/n-'/) K]]
Ner —g

Then, we have only to rewrite the moments in the fundamental equa-
tions by the inclinations using the Egs. (4.9).

Now, let us consider the Egs. (4.5). First, calculating sBy., and sB/,.,
in the Egs. (4.3) and (4.5), we have

an~r = s[in-r + Ay,'z' + Hner (2 an - Snr)] ’
bow

sB'nr = —s[iner + Ay/nor + ne (2 S, — Kq)]
and the following relations are satisfied
Q+HQCK—S)n, =0, [Qhr,+ H, (K, — 2 S)1=0 (D).

Thereupon, adopting the above relations to the Egs. (4.5), we see that
the Egs. (4.5) are satisfied identically. The above results tell us that
utilizing the Egs. '(4.9), we do not need to consider the Egs. (4.5).

Next, we consider the relations between the twisting moments and twist-
ing angles.

That is, substituting the Egs. (a) and (b) for M's and B’s in the Eqgs.
(4.4), we have
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. _ . ’e . .
I:Z:zv—Tf-_;-r - lTn_:;-r - 1[01 tno — €1 ln-l'T] + 2[b1 Ly — bllzn—l-r]
T =T ; 'y . ‘s ©.
24— =2 — = l[bl Lyer — by Lnr-1] + olC1 Eper — ¢! tpur_t]

Ner—1+4¢ Ner—¢

Then, applying the Egs. (4.9) and (c¢) to the Egs. (4.2) and 4.6), we
have ' '
1[=(@1 tn—1r 4 @2 Tnt10) + Loy (B Snepe1 + B3 inepia)

—{2(as +a2) + Ly.r (b1 + )} ip.r]
+ 2[(Nper @1 + Loy ¢1") Znery + (Nuer @2 4+ Ly €2) Eporin
+ {2 Npor (@1 + @2) — Ly., (61 +¢2')} in.] o

—3la Yu-1r — @ Ynrrr + (@ — @) Y.y

+ 3 Nuor 2[@) Y1 — @2 Ynrtr + (@2 — @) yuor) =[1Hpordo

l[cll z.n—lw' + C2 in-!-l-r + an (bl, in'r -1 + bz in-r—l—l)
— {er + ¢+ Npp (b1 + 52")Y in.r]
+ z[bl, z.n—l-r + b2 in+l~r + (Nn'r Cl,“‘ Ln-r al) iwr—-l

; 11
+ (Nn-r Co — Ln-r az) Tynort1 E ]0
— {b1 + b+ Npoy (o1 + ) + 2 Loy (@1 + @2)} En.y]
— 3 Ly o[04 Yper—1 + (@) — @) Yner — @3 Voorr1] = LHuordo
3 [[{LZ“ i"—l'r - aZ' i’n‘l’br + (al/_ a2l) in.r}
+ a/i-r—'—‘a,inq‘ + a'—a/i-r
DA CII,

+ 6 Li{a Yn1r + @ Yur1r} + 2801 Yper—1 + @2 Ypriad
— {i@" + a’) + (@ + @)} Yar) = GHner o

in which
(Huplo = =My — Npop oMoy — (Sntter + 1Kner) + NuwwGSnerr + 2K
[sHoilo = —Lner 2LMn.r — Snertr + Knor)]
BHaowdo = =LK'y — 8’0 + 2(K'ny — S) — 3 Pouy + Ryt

namely, the above Egs. (1),, (I} and (III), are the required fundamental
equations expressed in terms of the inclinations and the deflection at the in-
tersecting point (# -+ 7) of the members.

Further, in such cases when the intersecting points (# - #) are on the
boundary members, we find the fundamental equations directly from the
above Egs. (1J,, (I1), and (II1)y, provided that we consider the suffix of
the unknown quantities and their coefficients in the fundamental equations
and put the quantities referring to the fictitious members equal to zero.
Then, for the convenience of the actual calculations, we show the results
as follow.

(a) In such cases when the intersecting points (# - #) are on the bound-

ary members :—
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(i) case 7 = mmx.:—
1[=Ca1 ip1r + @2 8pi1er) + Loy 01 Sy
—{2(a1 + a2) + Ly, b1}in.,]
+ 2 [(Naer @1 + Ly €1 Cner1 + (2 Npor @ — Loy €1) i) ay
—31[a Yp-1r — @ Ynr1 + (@ — @) Yur)
+ 3 Nuwr 2@t (Yrr—1 — Yner) = [1Hporhs

1le) Gaciy + Cringior + Nuow 01 Gnupey — (€1 + ¢ + Nyoy 1) 25.r]
+ 2[0 En—1r + b fnrr + (Napor €1/ — Loy @1) ner—1
— (b1 + b+ 2 Ly a1 + Nper 1) iner]
— 3 Ly 20t’ (Yner—1 — Yur) = [2Hpnrn

(11,

3Li{a in—1r — @ tnpror + (@ — @) iner} + 2{a@ (ner—1 + T0)}]
+ 6 Li{a) Yn-1r + @ Y10} + 200" Ynra CIHID,
— Ga + 1a"+ 2a1") Ynr] = [sHph
in which
OHpodi = —[1 Mpor — Nuwp2Moor — GSntor + 1Kner) + Noor 2K nor]
GHnoli = — Loy s [Myr — Ky
[sHnolt = =K nr — 1S"w410r + 2K — 2 Py + Ryl .
(ii) case 7 =min,:—
[[—C@1 tparr + @2 Gn1) + Ly D2 Gner
—{2(a+a) + Lyp.y 02'Yin]
+ 2 [(Nuer @ + Loy €2) Eneppr + (2 Npor @2 — Loy €5') o] (I
4+ 3 [1a@d Ynt1er — 18] Yn—1er — Npur 283’ Yoy
+ G — 182+ Ny 205') Yuer = [1HpoJrr

1[e) En—ter + €2 Entior + Npur 03 inerg1— (€1 + €2'+ Napor b2) i)
+ o [0t in—ter + b2 int1r + (Nuer €2 — Ly @2) Enep
— (b1 + b+ Nueyp €'+ 2 Loy az) i)
— 3 Ly 205’ (Yner — Yaor+1) = LHnorlr

(IDy

30{a) in1r — @ Epprr + (@ — @) iner) — 202" 2 {Enert1 + Tnr}]
+ 6Li{a)” Yn-1.r + @ Yut103 + 202" Ynrta Iy
— {i(a/"+ @) + 209"} yur] = Hnolv
in which
LHpoly = =My — Nuop 2 My + Nyor 2S_n-r+1 - (ls;z-l-lor + 1K)
2 [Hn-r]l’ = —Ly, 2[Mn~r - S_n-r-H:]

[RHn-r:llf = "[IK/n-r - ISIn+I~r - 2S,n.r+l - 2 Pn-r + Rnr]
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(iii) case #=max.:—

1[—a1 tn—rer + Lpoy (0t Epap—t + B3 inert1)
—{2a; 4+ Ly, by + 02 )} iner]
+ o[(Nuwr @1 + Lner ¢1') Bnepe1 + (Nper @2 + Ly €2) Tprs1
+ {2 Npor (@1 + @2) — Law(cr + €5') in.,¥]
—31a (Yna1r — Yner) + 3 Nuwr2[@1 Yrro1 + (@' — ar') yn.r

— @' Ynor+1) = [1Hnerls

Bes*

161 dn1.r + Nopop (01 iner—1 + b3 inuer1) — {61+ Nyor (b1 + 02")}in.s)
+ 2001 dn1r + (Nyer €' — Loy @1) Syt + (Nauer bz — Lper @2) ineria
— {01 + Nuw (1 + ¢') + 2 Loy (@1 + @)} ipr]
=3 Loy sla Ynor1 + (@' — @) Ypur — @3 Ynerr1] = Hporla

(3,

3hat Gporer — fno) + 210 Ty — @2 Tnors + (@ — @) Tnr}] )

+ 6 14" Ypiar + 201" Yner—1 + 205" Vo (1113,

— La + 2(@) + @)Y Yno] = [3Hpor)
in which

[lHnor_E = _‘[1Mn-r - Nn~r 2Mn-r - lfn-r + Nn-r (Zgn—r-i-l + ZE.T)] )
[ZHn-r]Z = "‘Ln-r QEMn-r - (S;n-r-l-l + Knr)]
r2Hnr]z = —‘[lK,wr + 2K/n~r - ZS,n-'r—H - 2Pn-r + Rna]

(iv) case #=min.:—

1[—@ intror + Loy (01 Snerey + D2 fneptr)
—{2a; 4 Loy (b1 + 52D} inr]
+ 2 [(Nuer @1 + Lper €1") tnpe1 + (Nier @2+ Loy €3) Sper1
+ {2 Npor (@1 + @2) — Lyor (61 + €23 iner] Ly
— 316 (Ynor — Yurrr)
+ 3 Nuwr2[@! Yner1 + (@ — @)') Yuor — @2 Ynert1)
= [iHporly

(L€ Zntir + Nupur (0 Lnar—1 + 03 Tnep1) — {62"+ Npor (01 + 02D 0]
+ 2002 pr1r + (Nper €1 — Loy @1) Gnepe1 + (Nar €2 — Ly @2) Tporin
— {0+ Npr (c1 + ¢2') + 2 Lypr (a1 + a2)3Y iper]
— 3 Loy ol@) Yner—1 + (@2 — @) Ynor — @ Ynort1) = Hporlyr

(117

3 [1{_ azl (in-l-lor + lnr)} + 2{“1, Z.n-r—-l - 02, in~r+1 + (al/—‘ ﬂ2/) in~r}—.]
+ 6 (182" Yntrr + 240" Ynor—1 + @ Yneriid (11D
— (1@ + (@ + @)} Yner) = BHporly

in which
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0Huoly = —[0 My — Nuoy sMoor — 1Snt1r + Nuor GSnerta + 2Kprr)]
Holy = —Lneros[ Moy — (v + K], |
BHprder = —[—18nt10r + 2K ner — 2S0er41 — 2 Ppoy + Ry
(v) case (#-7)=max.:—
1l— @1 éprer + Lo 04 iy — (2 @1 + Ly, 81) g.r]
+ 2[(Npr @1 + Loy €1') fperet — (Luer €1 — 2 Ny @1) Br] - g s
—3{1 @& Yn1r — Ny 20y’ Ynor_1 — 08 — Ny 267') ¥0r} = [1iHprls
et tn1ir + Ny 01 Gpry — (€1 + Nyor 1) 2] ‘ _
+ 2[0) tnrr + (Nper €' — Loy @) ineyey — (01 + 2 Loy @1 + Npoyo€)) inrd) (1133
— 3 Ly 201" (Yner—1 — Ynr) = Hporls
3La Glneter + 18nr) + 280 Glnor—1 + 280.,)] A
+ 601" Ynoror + 200" Ynro1 — (@ 200D Yror] = Huorls
in which ‘

CIID);

ElHn-r]:i = —[IMn-r - Nn'r ZMrm‘ - 1Ez-r + Nn-rzl?n-r] s

[2Hn-r]3 = "‘Ln-r 'ZEer - _nr] 3’

[3Hn-r]3 = _[1Kn-r + 2Kn~r - Pncr + Rn-r]
(vi) case (#-7)=min.:—

1[— @2 Engrer + Loy D2 Gpopis — (2 @2 + Loy b)) i0]
-+ z[(Lnr C:+ Npop @) Ty — (Ln.rrczl'— 2 Ny.r bz’) lner] EI]3’
+ 3 0@ Yur1or — Nuer 202’ Ynorr1 — (182" — Nypoy 265') Y00} = [ Hpordy

106 Entrer + Naor b2 Gnerr — (624 Nyor ) 20

+ o[bs intrer — (Lner @3 — Nper €2) bperrr — (07 + 2 Lyoy @3 + Ny.p 03 g7 (1D
— 3Ly, Za‘.’l (yn~r - yn-r-f-l) = [2Hn-r:|3’

3 E_la'zl (1in+1-r + Iinar) - 202, (Zin-r-l-l + Zin-r)] }[III]
+ 6 118 Ypr1r + 202 Ynorr1 — (@7 + 2@2") Yuor = BHuorly *
in which

Hprly = —[iMuer — Npor2Mper — 1Sut1r + Naor 5Snaril s
CHawly = —Laer 2LMuer — Snur1l s
GHuoly = —[—{Snt1r + 2Sner1d — Poor + Ryerl

(vii) case »=max. and 7 =min.: —

1[—@1 tn1er + Ly by fpin — (2 @1 + Loy b3') 0t
+ ZE(Ln-T Cz + Nnor CZ?,) in~7‘+1 + (2 Nn-r as — Ln-r CZI) inr] EIJL
-3 {ia/ Yn—ter + Naer 202 Vo1 — (@ + Npor202') Yur} = [iHno s
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led incter F Nuop bz 8nas — (610 + Nyp b)) i
+ 2[01 dne1er — (Lper @2 — Npor €2) Gnertr — (D142 Ly @3 + Nyor ') i1 ) (11
— 3 Lur 20 (Ynr— Yner+1) = [aHuorls
3 Lia)Gin-1r + 180) — 282 Golnaprit 28ner)]
+6La)" Yn-1r + 20" Yrrr1 — (@ + 2@"") ynr] = [sHuorls G
in which
[ Hperds = — LMy — Nper 2 My — 1Koy + Nior 2Snre1]
LHnr s = —Loe o[Myy — Sneral
LHpods = —[1K'nr — 28 nrt1 — Py + Ryl
(viii) case # =min. and 7 = max.:—
1[—@2 bptrer + Lney 01 8per1 — (2 @2 + Ly b)) ip.r] \
+ o [(Lner €' + Nper @1) ineret — (Liner €1 — 2 Ny @1) T e
+ 30142 Ynr1r + Nawr 2@t Yner—1 — (182 4+ Npor201') Y0} = LiHperle J
1Lz tnt1er + Nuur 01" inrm1 — (o' + Npor b1) inr]
+ 2[b2 tntrr + (Nper €' — Loy @1) Gnry — (0’ + 2 Loy @1 + Nior 1) an]}
—3Lner 20t Ynere1 — Yner) = [aHporle
3[—1a (lntrer + 18ner) + 201 Glner—1 + 200.)]
+ 6114 Yuirr + 20" Ynormr — (182" + 201") Yur] = Hurly

(IDy

} (I,

in which
LHprly = —[(iMpr — Npop oMy — 1Sutter + Nowr 2Kl
LHnly = —Lpu s [My —Ka.,1,
GHurde = —[— 1S nt1r + 2K'ner — Py + Ryl

(b) In such cases when the ends (#-.#) of the members are built in
the frames.
In theses cases, as the previous discriptions, we have

slnr =0, e =0, Yu,p=0 (4.9

for the boundary conditions and these equations are used instead of the
fundamental equations.

In conclusion, from the above results, we have as many equations of
the form of the fundamental equations mentioned above as the intersecting
points (# - 7) of the members of the structure and the simultaneous equa-
tions of these equations are consisted with the same number of linear
equations as that of the unknown quantities (s, ¥)n., at all the intersecting
points in the structure and these equations can always be solved by the
well-known iteration methods. Then, utilizing theses values obtained above
for the Egs. (3.3) and (3.1), all of the requirements are directly found
and the present problems are solved,
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5. Conclusion, By the present method, the torsion and bending prob-
lems of continuous panel structures can always be solved, the members of
which cross each other with angles different from right angle and distribu-
tions of the external forces acting on the members are quite arbitrary ‘and
positions of the supported bars are also arbitrary, when the deflections
and the inclinations of the members of the structures are all small.

Needless to say, putting the angles 0,., different from right angle, namely
the angles between the &- and x-axes at the intersecting points (n - 7),
equal to zero, the present results perfectly coincide with those described
in the 1st report. But as the descriptions in the 1st report, the present
method, as it is, can not be used for the large deflections, because the for-
mulae of bending, say the Eqgs. (3.1), are not applicable and both of the
restriction conditions at the supported points and the boundary conditions
become far more complex than stated in the report. Moreover, when the
sizes of the cross-sections of the members are large, the restrictions re-
ceived by the deformations occuring in the cross-sections of the members
under the external forces are quantities of sensible magnitude, so that we
need consider these points fully in the practical designs of the structures.

Thus, we are still in the course of research of thess questions mentioned
above.

(Received July 31, 1953)





