
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A Non-Uniform Cache Architecture for Low Power
System Design

Ishihara, Tohru
Fujitsu Laboratories of America

Fallah, Farzan
Fujitsu Laboratories of America

https://hdl.handle.net/2324/6241

出版情報：Proc. of International Simposium on Low Power Electronics and Design, pp.363-368,
2005-08. International Simposium on Low Power Electronics and Design
バージョン：
権利関係：

A Non-Uniform Cache Architecture for Low Power System
Design

Tohru Ishihara
Fujitsu Laboratories of America
Sunnyvale, California, 94085

Toru.Ishihara@us.fujitsu.com

Farzan Fallah
Fujitsu Laboratories of America
Sunnyvale, California, 94085

Farzan.Fallah@us.fujitsu.com

ABSTRACT
This paper proposes a non-uniform cache architecture for
reducing the power consumption of memory systems. The non-
uniform cache allows having different associativity values (i.e.,
the number of cache-ways) for different cache-sets. An algorithm
determines the optimum number of cache-ways for each cache-set
and generates object code suitable for the non-uniform cache
memory. The paper also proposes a compiler technique for
reducing redundant cache-way accesses and cache-tag accesses.
Experiments demonstrate that our technique can reduce the power
consumption of memory systems by up to 76% compared to the
best result achieved by the conventional method.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Microprocessor/microcomputer applications

General Terms
Algorithms, Performance, Design.

Keywords
Microprocessor, Cache Memory, Compiler, Embedded Systems

1. INTRODUCTION
On-chip cache memories are one of the most power hungry

components of today’s microprocessors. For example,
ARM920T microprocessor dissipates 25% of the power in its
instruction cache [1][2]. StrongARM SA-110 processor, which
specifically targets low power applications, dissipates about 27%
of the power in its instruction cache [3]. Many techniques have
been proposed for optimizing cache configuration considering
tradeoff between energy consumption of off-chip memory and
cache memory [4][5] [6][7][8]. All these works use the fact that
while a bigger cache consumes more energy per access, it can
reduce the number of cache misses and as a result can reduce the
energy consumption of the off-chip memory. Furthermore, the
aforementioned works use a uniform cache architecture in which
all cache-sets have the same associativity (i.e., the number of
cache-ways). We show that by relaxing the cache uniformity

constraint, the dynamic power consumption and the leakage
current of the cache memory can be substantially reduced. Figure
1 shows the conventional uniform cache architecture and the non-
uniform one.

Conventional Cache

 (Uniform Cache)

way0 way1 way2 way3 way0
set0
set1
set2
set3
set4
set5
set6
set7

way1 way2 way3

Our Cache Archtecture

 (Non-Uniform Cache)

UnusedUnused

Figure 1. Uniform and non-uniform cache architectures

One of the most effective compiler techniques to reduce the
power consumption of off-chip memories is the code placement
technique [9][10][11][12][13]. The idea is to modify the place of
basic blocks or procedures in the address space so that the number
of cache conflict misses is minimized. This can significantly
reduce the number of cache misses and improve a program's
execution time. In this paper, we also propose a method for
simultaneous cache sizing and code placement for the non-
uniform cache architecture.

In summary the main contributions of this paper are introducing,
1) the non-uniform cache architecture,
2) a new code placement technique for reducing the power

consumption of set associative caches by reducing the
number of tag lookups and cache-ways accessed , and

3) an algorithm for simultaneously optimizing cache
architecture and performing code placement to reduce both
the number of cache accesses and cache misses.

The rest of the paper is organized as follows. In Section 2, we
motivate the problem and present our approach to reducing the
power consumption of memories. The formal definition of the
problem and our algorithm for solving it are presented in Section
3. Section 4 presents experimental results. The paper concludes in
Section 5.

2. MOTIVATION AND OUR APPROACH
2.1 Motivational Example

Assume the energy consumption for each cache access and off-
chip memory access is 60pJ and 250pJ, respectively (see Figure 2)
[1][2][14][15]. If we optimize the number of cache-ways and the
code placement for an application, the power consumption of
memory hierarchy may be reduced significantly.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED’05, August 8–10, 2005, San Diego, California, USA.
Copyright 2005 ACM 1-59593-137-6/05/0008…$5.00.

363

I-Cache

60pJ per access
250pJ - 675pJ

per access

 Main Memory

(Flash Memory)

MPU (ARM920T)

0.13µm, VDD=1.2V

TM

Figure 2. ARM920T example

For example, based on our experiment, the optimal number of
cache-ways for the SPEC95 benchmark program, “Compress”, is
8 as shown in the left-side of Figure 3. Note that the leakage
power of the cache memory is assumed to be 10% of its dynamic
power consumption. If we employ a non-uniform cache and
optimize the number of cache-ways and the code placement
simultaneously, the total power consumption of memories can be
reduced by 22%, compared to the power consumption of the
optimized uniform cache configuration as shown in Figure 3.

0

4

8

12

16

20

64 32 16 8 4 2 1

The number of cache ways

P
o

w
e

r
c
o

n
s
u

m
p

ti
o

n
 [

m
W

]

0

1

2

3

4
Non-uniform cache

Uniform cache
Leakage power

Dynamic power of
cache memory

of cache memory

of main memory
Power dissipation

22%

saving

Figure 3. A comparison between the power consumption of
uniform and non-uniform caches

2.2 Non-Uniform Cache Architecture
We determine the optimum number of cache-ways for each

cache-set at design time. Although the number of active cache-
ways can be changed dynamically by using a sleep transistor
during the course of running an application program, we do not
consider it in this work. The power supply of unused cache-ways
(the gray portion of Figure 4) can be disconnected by eliminating
vias used for connecting the power supply to memory cells.
Unused memory cells can also be disconnected from bit and word
lines in the same fashion.

way-1
Disable

way-2,3
Disable

Memory Address Reg.

tag offsetset-index

way0tag0 tag1 tag3tag2

set0

set1

set2

set3

set4

set5

set6

set7

way1 way2 way3

UnusedUnused

S

A

S

A

S

A

S

A

S

A

S

A

S

A

S

A

Configurable Logic

SA: Sense Amplifier

Figure 4. Deactivating sense amplifiers

One possible way of marking unused cache blocks is to use a
second valid bit [16]. If the bit is one, the corresponding cache
block will not be used for replacement in case of a cache miss.
Accessing an unused block will always cause a cache miss. To
reduce the dynamic power consumption of the non-uniform cache,
it is possible to deactivate sense-amplifiers of cache-ways which
are marked as unused for the accessed cache-set. This can be
easily implemented by checking the set-index field of the memory
address register. For example in Figure 4, sense-amplifiers for
tag1 and way1 are deactivated when the target cache-set is 4, 5, 6,
or 7. Similarly, sense-amplifiers for tag2, way2, tag3, and way3
are deactivated when one of sets 2-7 is accessed.

2.3 Reducing Redundant Cache Accesses
In [17], Panwer et al. have shown that cache-tag access and tag

comparison do not need to be performed for all instruction fetches.
Consider an instruction j executed immediately after an
instruction i. There are three cases,
1. Intra-cache-line sequential flow

This occurs when both i and j instructions reside on the
same cache-line and i is a non-branch instruction or an
untaken branch.

2. Inter-cache-line sequential flow
This case is similar to the first one, the only difference is
that i and j reside on different cache-lines.

3. Non-sequential flow
In this case, i is a taken branch instruction and j is its target.

In the first case (intra-cache-line sequential flow), it is easy to
detect that j resides in the same cache-way as i. Therefore, there is
no need to perform a tag lookup for instruction j [1][17][18]. On
the other hand, a tag lookup and a cache-way access are required
for a non-sequential fetch such as a taken-branch (non-sequential
flow) or a sequential fetch across a cache line boundary (inter-
cache-line sequential flow). As a consequence, the power
consumption of the cache memory can be reduced by deactivating
memory modules of tags and cache-ways in case of the intra-
cache-line sequential flow. Several embedded processors
including ARM [1][18] use this technique. We refer to this
technique as Inter-Line Way Memoization or ILWM. We use
ILWM in our approach.

I-Cache

(i.e., Inter-cache-line sequential flow)

(i.e., Non-sequential flow)

non-branch instruction

taken-branch instruction

a4 a5 a6 a7
a1 a2 a3

I-Cache

(i.e., Non-sequential flow)
taken-branch instruction

a1 a2 a3 a4 a5 a6 a7

Basic-block-(a)

cache

line-(n)

Figure 5. A code placement technique for reducing redundant

cache-way and cache-tag accesses

Assume a basic block “a” consists of 7 instructions and its last
instruction, a7, which is a taken-branch resides in the fourth word
of the cache line “n” (see Figure 5). Further, assume the last
instruction of the cache line “n” is not a branch instruction. A tag
lookup is required when a3 or a7 is executed because in either
case it is not clear whether the next instruction resides in the
cache or not. However, if the location of the basic block “a” in the
address space is changed so the basic block “n” is not located
across a cache-line boundary, the cache and tag accesses for

364

instruction a3 can be eliminated (see Figure 5). Therefore, we
change the placement of basic blocks in the main memory so
frequently accessed basic blocks are not located across a cache-
line boundary. To the best of our knowledge, this is the first code
placement technique which reduces the number of redundant
cache-way and cache-tag accesses.

Figure 6 shows the power breakdown for a cache. For example
in “JPEG_enc”, the inter-cache-line sequential flow is responsible
for 10% of cache accesses. Note that for inter-cache-line
sequential flows, all cache-ways and cache-tags are activated.
Therefore, the power consumption of the cache memory due to
the inter-cache-line sequential flow is large especially for highly
associative caches. Assuming a 16-way set associative cache,
more than 50% of the cache power in “JPEG_enc” is due to the
inter cache-line sequential flow. Therefore, decreasing the number
of the inter cache-line sequential flow substantially reduces the
cache power consumption. Another way of reducing the number
of times the inter cache-line sequential flow occurs is increasing
the size of cache-lines. However, increasing the cache-line size
increases the number of off-chip memory accesses in case of a
cache miss. Our algorithm presented in the next section takes this
trade-off into account and explores different cache-line sizes to
minimize the total power consumption of the memory hierarchy.

Compress

P
e
rc

e
n
ta

g
e
 o

f
P

o
w

e
r

(%
)

P
e
rc

e
n
ta

g
e
 o

f
O

c
c
u
rr

e
n
c
e
 (

%
)

JPEG_enc MPEG2enc

0

20

40

60

80

100

0

20

40

60

80

100

4 8 16 4 8 16 4 8 16

Power consumption of cache memory

Intra-cache-line sequential flow (accesses a single way only)

Inter-cache-line sequential flow (accesses all ways and tags)

Non-sequential flow (accesses all ways and tags)

Occurrence count

ways # ways # ways

Figure 6. Power break down for a cache

2.4 Concurrent Optimization of Cache
Configuration and Code Placement

We first explain the idea behind the conventional code
placement technique. Consider a direct-mapped cache of size C (C
= 2m words) whose cache line size is L words, i.e., L consecutive
words are fetched from the memory on a cache read miss. In a
direct-mapped cache, the cache line containing a word located at
memory address M can be calculated by (M/L mod C/L).
Therefore, two memory locations Mi and Mj will map onto the
same cache line if the following condition holds,

0 mod =











−





L
C

L
M

L
M ji

The above equation can be written as:

() ()LCnMMLCn ji +⋅<−<−⋅)((1)

where n is any integer. If basic blocks Bi and Bj are inside a loop
whose iteration count is N and their memory locations Mi and Mj
satisfy condition (1), cache conflict misses occur at least N times
when executing the loop [19]. This can be extended for a W-way
set associative cache. A cache conflict miss occurs in a W-way set
associative cache if more than W different addresses with distinct
M/L values satisfy condition (1) are accessed in a loop; note M
is the memory address. Therefore, the number of cache conflict
misses can be easily calculated from cache parameters (i.e.,
cache-line size, the number of cache-sets and the number of
cache-ways), the location of each basic block in the memory
address space and the iteration count for each closed loop for a
target application program [11]. Several code placement
techniques have used the above before [9][10][11][12][13] and
many cache optimization techniques have been proposed for
reducing the sum of the power consumption of the off-chip
memory and the cache [4][5][6][7][8]. However, to the best of our
knowledge, there is no technique for simultaneously performing
code placement and cache configuration optimization. Therefore,
conventional cache optimization flows need to perform several
steps iteratively to find the optimum cache configuration and
generate object code for it (see Figure 7).

Code Placement

(Compiler Optimization)

Cache Configuration

Optimization

Power & Performance

Estimation

satisfied?

No

Yes

Figure 7. A conventional cache optimization flow

Our approach optimizes cache configuration and code placement
simultaneously to reduce the dynamic and leakage power
consumption of cache memory and off-chip memory for a given
performance constraint. We used the method presented in [11][13]
to analytically calculate the number of cache misses based on (1).
Our algorithm calculates the number of cache conflicts in each
cache-set for a given associativity (i.e., the number of ways).

3. PROBLEM DESCRIPTION
3.1 Notation
• Ememory, Eway, and Etag: The energy consumption per access

for the main memory, a single cache-way, and a cache-tag
memory, respectively.

• Pstatic: The static power consumption of the main memory.
• TEmemory and TEcache: The total energy consumption of the

main memory (i.e., the off-chip memory) and the cache (i.e.,
cache-tag and cache-way), respectively.

• Pleakage: The leakage power consumption of a 1-byte cache
memory block.

• TEleakage: The total energy consumption of the cache
memory due to leakage.

• Wbus: The memory access bus width (in byte).
• Winst: The size of an instruction (in byte).

365

• Scache: The number of sets in a cache memory.
• Caccess: The number of CPU cycles required for a single

memory access.
• Cwait: The number of wait-cycles for a memory access.
• Fclock: The clock frequency of CPU.
• nline: The line size of the cache memory (in byte).
• ai: The number of ways in the ith cache-set.
• Nmiss: The number of cache misses.
• Ninst: The number of instructions executed.
• Xi: The number of “full-way accesses” for the ith cache-set.

In the “full-way” access, all cache-ways and cache-tags in
the target cache-set are activated. A “full-way access” is
necessary in case of an inter-cache-line sequential flow or a
non-sequential flow. Otherwise, only a single cache-way is
activated.

• Ttotal, and Tconst: The total execution time and the constraint
on it.

• Ptotal: The total power consumption of the memory system.

We assume Ememory, Eway, Etag, Pstatic, Pleakage, Wbus, Winst, Scache,
Fclock, Caccess, Cwait, and Tconst are given parameters. The
parameters to be determined are nline and ai. Nmiss, Xi, and Ttotal are
functions of the code placement, Wbus, Winst, nline and ai. We can
find Nmiss, Ninst, and Xi by using a method presented in [11][13].
Since the cache is usually divided into sub-banks and only a
single sub-bank is activated per access [20], Eway is independent
of nlines.

3.2 Problem Formulation
The problem can be formally defined as follows:
“For given values of Ememory, Eway, Etag, Pstatic, Pleakage, Wbus, Winst,
Scache, Fclock, Caccess, Cwait, and the original object code, determine
code placement, nline and ai to minimize Ptotal, the total power
consumption of the memory hierarchy under the given time
constraint Tconst.”
Note that Ttotal, TEmemory TEcache,TEleakage, and Ptotal can be
calculated using the following formulas:

consttotaltotalleakagecachememorytotal

i

ilinetotalleakageleakage

i

iitag

i

iiway

misstag
inst

line
misswayinstwaycache

totalstatic
bus

line
missmemorymemory

wait
bus

line
accessmissinst

clock
total

TTTTETETEP

anTPTE

XaEXaE

NE
W
nNENETE

TP
W
nNETE

C
W
nCNN

F
T

cache

cachecache

S

SS

≤++=

⋅⋅⋅=

⋅⋅+⋅−⋅+

⋅+⋅⋅+⋅=

⋅+⋅⋅=

+⋅⋅+⋅=

∑

∑∑

=

==

 ,/)(

)(})1{(

)}({1

0

00

3.3 Algorithm
Our algorithm starts with an original cache configuration

(nlines=32, Scache=8, ai=64). In the next step, our algorithm finds
the optimal location of each block of the application program in
the address space. This is done by changing the order of placing
functions in the address space and finding the best ordering. For

each ordering, the algorithm greedily reduces the energy by
iteratively finding a cache-set for which reducing the number of
ways by a factor of 2 gives the largest power reduction. The
power consumption (Ptotal) and the run-time (Ttotal) are found by
calculating the number of cache misses for a given associativity
using the technique presented in [11][13]. The calculation can be
done without simulating the cache and by analyzing an iteration
count of each loop and the location of each basic block in the
address space for the application program. The ordering which
gives the minimum energy is selected along with the optimal
number of ways for each cache-set. The algorithm performs the
above for different cache-line sizes and continues as long as the
power consumption reduces. Note the ordering of functions is
fixed when the cache-line sizes are changed. This is a good
simplification because the optimum ordering of functions usually
does not change widely when cache-line sizes vary by a factor of
2. The computation time of the algorithm is quadratic in terms of
the number of functions and linear in terms of the number of loops
of the application program.

Procedure MinimizePower
Input: Ememory, Eway, Etag, Pleakage, Wbus, Winst, Scache, Fclock, Caccess,

Cwait, Tconst, Pstatic, and original object code
Output: nline, a set of ai, and order of functions in the optimized
object code

Let L be the list of functions in the target program sorted in
descending order of their execution counts;

Pmin = Tmin = infinity;
for each nline ∈ {32,64,128,256,512} do

Pinit = Pmin; Tinit = Tmin;
repeat

Pmin = Pinit; Tmin = Tinit;
for (t=0; t<|L|; t++) do

p = L[t];
for each p’ ∈ L and p’≠ p do

Insert function p in the place of p’;
Set all ai to 64 and calculate Ptotal and Ttotal;
repeat

1. Find a cache-set for which reducing the
number of cache ways by a factor of 2 results
in the largest power reduction;

2. Divide the number of cache-ways for the
cache-set by 2 and calculate Ptotal and Ttotal;

until ((Ptotal stops decreasing) or (Ttotal > Tconst))
if (Ptotal ≤ Pmin & Ttotal ≤ Tmin) then

Pmin = Ptotal; Tmin = Ttotal; BESTlocation = p’;
end if

end for
Put function p in the place of BESTlocation

end for
until (Pmin stops decreasing)
if (Pinit == Pmin & Tinit ≤ Tconst) then

Output BESTline, BESTways and BESTorder; Exit;
else

BESTline = nline; BESTways = a set of ai;
BESTorder = order of functions;

end if
end for

end Procedure

366

4. EXPERIMENTAL RESULTS
4.1 Experimental Setup

We calculated Ememory, Eway, Etag, Pleakage, and Pstatic for the
system in Figure 2. The cache size, the number of cache sets, the
number of cache-ways, the cache line size, and the clock
frequency of the original CPU are assumed to be 16KB, 8, 64, 32-
byte, and 250MHz, respectively [2]. Since the outputs of flash
memories used in [14] and [15] are 16-bit, we assumed Wbus=16 in
our experiment. The bit width of instructions is 32, therefore, Winst
= 4. The number of CPU cycles required for a memory access and
the number of wait-cycles for a memory access are assumed to be
4 (i.e., Caccess = Cwait = 4), since the clock frequency of the flash
memory and the processor core are 80MHz and 250MHz,
respectively. We considered two scenarios, low leakage and high
leakage with the leakage power of the cache memory equal to 5%
and 10% of the dynamic power, respectively. We used three
benchmark programs; Compress version 4.0, JPEG encoder
version 6b, and MPEG2 encoder version 1.2. Table I shows the
number of functions, basic blocks and instructions for each
benchmark program. We used GNU C compiler and debugger for
ARMv4T architecture to generate address traces.

TABLE I. Specification of benchmark programs
 # Functions # Basic blocks # Instructions
Compress 160 2,281 10,716
JPEG_enc 353 6,451 30,867
MPEG2enc 256 6,428 33,850

4.2 Results
We compared the following four techniques, (a) performing

cache sizing for uniform cache, (b) performing cache sizing for
uniform cache and the conventional code placement after that, (c)
performing our code placement and cache sizing for a uniform
cache concurrently, and (d) concurrent optimization for non-
uniform cache. Redundant cache-way and cache-tag access
elimination (ILWM) [17] was used for all four techniques. The
number of cache-sets in all experiments was 8.

0

2

4

6

8

0

10

20

30
Compress JPEG_enc MPEG2enc

Po
w

er
 c

on
su

m
pt

io
n

[m
W

]

(a)(b)(c)(d) (a)(b)(c)(d) (a)(b)(c)(d) (a)(b)(c)(d) (a)(b)(c)(d)(a)(b)(c)(d)

Optimization w/o time constraint

Optimization w/ time constraint

Low Leak High Leak Low Leak High Leak Low Leak High Leak

Compress JPEG_enc MPEG2enc

(a)(b)(c)(d) (a)(b)(c)(d) (a)(b)(c)(d) (a)(b)(c)(d) (a)(b)(c)(d)(a)(b)(c)(d)
Low Leak High Leak Low Leak High Leak Low Leak High Leak

Leakage power consumption of cache
Dynamic power consumption of cache
Power dissipation of main memory

Figure 8. Comparison of different techniques

The power consumption results optimized without and with a time
constraint are shown in Figure 8. The time constraint Tconst is set
to the execution time of the target application program with the
original cache configuration. “Low Leak” and “High Leak” in
Figure 8 correspond to low- and high-leakage scenarios,
respectively.

Since conventional code placement techniques reduce the
number of cache misses only, they may increase the number of
cache-way and tag accesses if the processor uses the ILWM
technique [17]. For example, compare case (a) and (b) in the time-
constrained optimization results in Figure 8. On the other hand,
our methods (c) and (d) always reduce the dynamic power
consumption of the cache memories. Optimizing without a time-
constraint reduced the power consumption for “Compress” by
29% (17% on an average), while in presence of a time-constraint,
up to 76% (52% on an average) reduction in the power
consumption was achieved. The reason for better results for time-
constrained case is that it requires higher number of ways.
Therefore, there is more opportunity for our method to reduce the
average number of cache-ways accessed.

Table II shows the number of ways, cache-line size and cache
size (in byte) in the high-leakage case in our experiment. As one
can see, in many cases our approach (d) reduces the effective size
(the total size of blocks used) of the cache memory as well.

TABLE II. The cache configuration results
Compress JPEG_enc MPEG2enc

w/o
Tconst

w/
Tconst

w/o
Tconst

w/
Tconst

w/o
Tconst

w/
Tconst

nline 256 32 128 32 64 32
ai 4 32 8 64 8 64

(a)
and
(b) size 8K 8K 8K 16K 4K 16K

nline 256 64 256 64 512 64
ai 4 16 4 64 4 64

(c) size 8K 8K 8K 32K 16K 32K
nline 256 64 256 64 128 64

a0...7

1,4,
4,4,
4,4,
4,2

8,8,
8,8,
8,8,
8,8

4,4,
4,4,
4,4,
2,4

64,64,
32,16,
32,32,
16,16

8,8,
16,16,
8,8,
2,4

32,32,
64,32,
64,64,
64,64

(d) size 3.38K 4K 7.5K 17K 8.75K 26K

Since the behavior of a program depends on its input values, an
object code and cache configuration optimized for a specific input
value is not necessarily optimal for the other input values. To see
the effect of changing the input value on the cache behavior, we
calculated the power consumption of memory systems for
different input values. We calculated the following three values
for six different input values:
1. the power consumption for the original object code executed

with a uniform cache optimized for Data0.

2. the power consumption (Ptotal) for the optimized object code
executed with a non-uniform cache optimized for Data0.

367

3. the total execution time (Ttotal) for the optimized object code
running on a processor with the non-uniform cache. The
performance value is normalized to the performance for Data0.

Figure 9 shows the results for six different input values for each
benchmark program. The left and right vertical axes represent the
power consumption of memories and the normalized performance
of a processor with the non-uniform cache, respectively. The
object code and cache configuration were optimized for Data0
using our algorithm for non-uniform caches. As one can see, the
object code and the cache configuration optimized for Data0
achieve very good results for other input values as well.

0

5

10

15

20

0

0.5

1.0

1.5

2.0

D
at

a0

D
at

a1

D
at

a2

D
at

a3

D
at

a4

D
at

a5

D
at

a0

D
at

a1

D
at

a2

D
at

a3

D
at

a4

D
at

a5

D
at

a0

D
at

a1

D
at

a2

D
at

a3

D
at

a4

D
at

a5

Compress JPEG encoder MPEG2 encoder

Non-uniform cache + Optimized object code
Normalized performance of the non-uniform cache

Uniform cache + Original object code

Po
w

er
 C

on
su

m
pt

io
n

(m
W

)

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Figure 9. Input Data Dependency

Table III shows computation time (in second) of four
optimization methods executed on an UltraSPARC-II dual CPU
workstation running Solaris8 at 450MHz with 2GB of memory.
Since the optimization time in some cases is very large, our future
plan is substantially reducing it.

TABLE III. CPU-time for cache optimization (second)
Compress JPEG_enc MPEG2enc

w/o
Tconst

w/
Tconst

w/o
Tconst

w/
Tconst

w/o
Tconst

w/
Tconst

(a) < 1 < 1 1 1 2 2
(b) 15 42 103 474 710 1,628
(c) 62 129 812 1,851 1,331 4,289
(d) 364 351 2,783 5,391 8,329 10,413

5. SUMMARY AND CONCLUSIONS
In this paper, we proposed the non-uniform cache architecture,

a code placement technique for reducing the power consumption
of caches, and an algorithm for simultaneous cache configuration
optimization and code placement. In future we plan to enhance
our method by dynamically disabling cache-ways during the
course of running an application program. Our current algorithm
sets the value of nline and ai to powers of 2 only. This is done to
make the search easy. In future we plan to improve the power
saving by relaxing this constraint on the values of nline and ai.

6. ACKNOWLEDGMENTS
We would like to thank Tom Sidle, the VP of advanced CAD
Technology at Fujitsu Laboratories of America for supporting this
research.

7. REFERENCES
[1] S. Segars, “Low Power Design Techniques for

Microprocessors”, ISSCC Tutorial note, February 2001.
[2] ARM Ltd., “ARM Processor Core Overview”,

http://www.arm.com/products/CPUs/
[3] J. Montanaro et al., “A 160 MHz, 32b 0.5W CMOS RISC

Microprocessor”, In Proc. of ISSCC, February 1996.
[4] C. Su and A. Despain, “Cache Design Trade-offs for Power

and Performance Optimization: A Case Study”, In Proc. of
ISLPED, pp.63-68, August 1995.

[5] P. Hicks, M. Walnock, and R. M. Owens, “Analysis of
Power Consumption in Memory Hierarchies”, In Proc. of
ISLPED, pp.239-242, August 1997.

[6] Y. Li, and J. Henkel, “A Framework for Estimating and
Minimizing Energy Dissipation of Embedded HW/SW
Systems”, In Proc. of DAC, pp.188-193, June, 1998.

[7] W. T. Shine, and C. Chacrabarti, “Memory Exploration for
Low Power, Embedded Systems”, In Proc. of DAC, pp.140-
145, June, 1999.

[8] A. Malik, B. Moyer and D. Cermak, “A Low Power Unified
Cache Architecture Providing Power and Performance
Flexibility”, In Proc. of ISLPED, pp.241-243, July 2000.

[9] S. McFarling, “Program Optimization for Instruction
Caches”, In Proc. of Int’l Conference on Architecture
Support for Programming Languages and Operating Systems,
pp.183-191, April 1989.

[10] W. W. Hwu and P. P. Chang, “Achieving High Instruction
Cache Performance with an Optimizing Compiler”, In Proc.
of ISCA, pp.242-251, May 1989.

[11] H. Tomiyama and H. Yasuura, “Optimal Code Placement of
Embedded Software for Instruction Caches”, In Proc. of
European Design and Test Conference, pp.96-101, March,
1996.

[12] A. H. Hashemi, D. R. Kaeli, and B. Calder, “Efficient
Procedure Mapping Using Cache Line Coloring”, in Proc. of
Programming Language Design and Implementation, pp.171-
182, June, 1997.

[13] S. Ghosh, M. Martonosi, and S. Malik, “Cache Miss
Equations: A Compiler Framework for Analyzing and
Tuning Memory Behavior”, ACM Trans. on Programming
Languages and Systems, vol.21, no.4, pp.703-746, July, 1999.

[14] Micron Technologies Inc., “Low Power Flash”,
http://www.micron.com/products/flash/lowpower/

[15] Fujitsu Ltd., “128Mbit (x16bit) Burst Mode Flash Memory
MBM29BS12DH”,
http://edevice.fujitsu.com/fj/MARCOM/find/21-2e/

[16] D. A. Patterson, et al., “Architecture of a VLSI instruction
cache for a RISC”, In Proc. 10th Annual Int’l Symposium on
Computer Architecture, vol. 11, no. 3, pp.108-116, June,
1983.

[17] R. Panwar, and D. Rennels, “Reducing the Frequency of Tag
Compares for Low Power I-Cache Design”, In Proc. of
ISLPED, pp.57-62, August 1995.

[18] M. Muller, “Power Efficiency & Low Cost: The ARM6
Family”, In Proc. of Hot Chips IV, August 1992.

[19] H. Hill and A. J. Smith, “Evaluating Associativity in CPU
Cache”, IEEE Trans. on Computers, Vol. 38, No. 12,
pp.1612-1630, December, 1989.

[20] K. Ghose and M. B. Kamble, “Reducing Power in
Superscalar Processor Caches Using Subbanking, Multiple
Line Buffers and Bit-Line Segmentation”, In Proc. of
ISLPED, pp.70-75, August 1999.

368

