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ABSTRACT 
This paper proposes a non-uniform cache architecture for 
reducing the power consumption of memory systems. The non-
uniform cache allows having different associativity values (i.e., 
the number of cache-ways) for different cache-sets. An algorithm 
determines the optimum number of cache-ways for each cache-set 
and generates object code suitable for the non-uniform cache 
memory. The paper also proposes a compiler technique for 
reducing redundant cache-way accesses and cache-tag accesses. 
Experiments demonstrate that our technique can reduce the power 
consumption of memory systems by up to 76% compared to the 
best result achieved by the conventional method. 

Categories and Subject Descriptors 
C.3 [Special-Purpose and Application-Based Systems]: 
Microprocessor/microcomputer applications 

General Terms 
Algorithms, Performance, Design. 

Keywords 
Microprocessor, Cache Memory, Compiler, Embedded Systems 

1. INTRODUCTION 
On-chip cache memories are one of the most power hungry 

components of today’s microprocessors. For example, 
ARM920T microprocessor dissipates 25% of the power in its 
instruction cache [1][2]. StrongARM SA-110 processor, which 
specifically targets low power applications, dissipates about 27% 
of the power in its instruction cache [3]. Many techniques have 
been proposed for optimizing cache configuration considering 
tradeoff between energy consumption of off-chip memory and 
cache memory [4][5] [6][7][8]. All these works use the fact that 
while a bigger cache consumes more energy per access, it can 
reduce the number of cache misses and as a result can reduce the 
energy consumption of the off-chip memory. Furthermore, the 
aforementioned works use a uniform cache architecture in which 
all cache-sets have the same associativity (i.e., the number of 
cache-ways). We show that by relaxing the cache uniformity 

constraint, the dynamic power consumption and the leakage 
current of the cache memory can be substantially reduced. Figure 
1 shows the conventional uniform cache architecture and the non-
uniform one. 
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Figure 1.  Uniform and non-uniform cache architectures 

One of the most effective compiler techniques to reduce the 
power consumption of off-chip memories is the code placement 
technique [9][10][11][12][13]. The idea is to modify the place of 
basic blocks or procedures in the address space so that the number 
of cache conflict misses is minimized. This can significantly 
reduce the number of cache misses and improve a program's 
execution time. In this paper, we also propose a method for 
simultaneous cache sizing and code placement for the non-
uniform cache architecture. 

In summary the main contributions of this paper are introducing, 
1) the non-uniform cache architecture,  
2) a new code placement technique for reducing the power 

consumption of set associative caches by reducing the 
number of tag lookups and cache-ways accessed , and  

3) an algorithm for simultaneously optimizing cache 
architecture and performing code placement to reduce both 
the number of cache accesses and cache misses. 

The rest of the paper is organized as follows. In Section 2, we 
motivate the problem and present our approach to reducing the 
power consumption of memories. The formal definition of the 
problem and our algorithm for solving it are presented in Section 
3. Section 4 presents experimental results. The paper concludes in 
Section 5. 

2. MOTIVATION AND OUR APPROACH  
2.1 Motivational Example 

Assume the energy consumption for each cache access and off-
chip memory access is 60pJ and 250pJ, respectively (see Figure 2) 
[1][2][14][15]. If we optimize the number of cache-ways and the 
code placement for an application, the power consumption of 
memory hierarchy may be reduced significantly. 
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Figure 2.  ARM920T example 

For example, based on our experiment, the optimal number of 
cache-ways for the SPEC95 benchmark program, “Compress”, is 
8 as shown in the left-side of Figure 3. Note that the leakage 
power of the cache memory is assumed to be 10% of its dynamic 
power consumption. If we employ a non-uniform cache and 
optimize the number of cache-ways and the code placement 
simultaneously, the total power consumption of memories can be 
reduced by 22%, compared to the power consumption of the 
optimized uniform cache configuration as shown in Figure 3. 
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Figure 3.  A comparison between the power consumption of 
uniform and non-uniform caches 

2.2 Non-Uniform Cache Architecture 
We determine the optimum number of cache-ways for each 

cache-set at design time. Although the number of active cache-
ways can be changed dynamically by using a sleep transistor 
during the course of running an application program, we do not 
consider it in this work. The power supply of unused cache-ways 
(the gray portion of Figure 4) can be disconnected by eliminating 
vias used for connecting the power supply to memory cells. 
Unused memory cells can also be disconnected from bit and word 
lines in the same fashion. 
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Figure 4.  Deactivating sense amplifiers 

One possible way of marking unused cache blocks is to use a 
second valid bit [16]. If the bit is one, the corresponding cache 
block will not be used for replacement in case of a cache miss. 
Accessing an unused block will always cause a cache miss. To 
reduce the dynamic power consumption of the non-uniform cache, 
it is possible to deactivate sense-amplifiers of cache-ways which 
are marked as unused for the accessed cache-set. This can be 
easily implemented by checking the set-index field of the memory 
address register. For example in Figure 4, sense-amplifiers for 
tag1 and way1 are deactivated when the target cache-set is 4, 5, 6, 
or 7. Similarly, sense-amplifiers for tag2, way2, tag3, and way3 
are deactivated when one of sets 2-7 is accessed. 

2.3 Reducing Redundant Cache Accesses 
In [17], Panwer et al. have shown that cache-tag access and tag 

comparison do not need to be performed for all instruction fetches. 
Consider an instruction j executed immediately after an 
instruction i. There are three cases, 
1. Intra-cache-line sequential flow 

This occurs when both i and j instructions reside on the 
same cache-line and i is a non-branch instruction or an 
untaken branch. 

2. Inter-cache-line sequential flow 
This case is similar to the first one, the only difference is 
that i and j reside on different cache-lines. 

3. Non-sequential flow 
In this case, i is a taken branch instruction and j is its target. 

In the first case (intra-cache-line sequential flow), it is easy to 
detect that j resides in the same cache-way as i. Therefore, there is 
no need to perform a tag lookup for instruction j [1][17][18]. On 
the other hand, a tag lookup and a cache-way access are required 
for a non-sequential fetch such as a taken-branch (non-sequential 
flow) or a sequential fetch across a cache line boundary (inter-
cache-line sequential flow). As a consequence, the power 
consumption of the cache memory can be reduced by deactivating 
memory modules of tags and cache-ways in case of the intra-
cache-line sequential flow. Several embedded processors 
including ARM [1][18] use this technique. We refer to this 
technique as Inter-Line Way Memoization or ILWM. We use 
ILWM in our approach. 
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Figure 5.  A code placement technique for reducing redundant 

cache-way and cache-tag accesses 

Assume a basic block “a” consists of 7 instructions and its last 
instruction, a7, which is a taken-branch resides in the fourth word 
of the cache line “n” (see Figure 5). Further, assume the last 
instruction of the cache line “n” is not a branch instruction. A tag 
lookup is required when a3 or a7 is executed because in either 
case it is not clear whether the next instruction resides in the 
cache or not. However, if the location of the basic block “a” in the 
address space is changed so the basic block “n” is not located 
across a cache-line boundary, the cache and tag accesses for 
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instruction a3 can be eliminated (see Figure 5). Therefore, we 
change the placement of basic blocks in the main memory so 
frequently accessed basic blocks are not located across a cache-
line boundary. To the best of our knowledge, this is the first code 
placement technique which reduces the number of redundant 
cache-way and cache-tag accesses. 

Figure 6 shows the power breakdown for a cache. For example 
in “JPEG_enc”, the inter-cache-line sequential flow is responsible 
for 10% of cache accesses. Note that for inter-cache-line 
sequential flows, all cache-ways and cache-tags are activated. 
Therefore, the power consumption of the cache memory due to 
the inter-cache-line sequential flow is large especially for highly 
associative caches. Assuming a 16-way set associative cache, 
more than 50% of the cache power in “JPEG_enc” is due to the 
inter cache-line sequential flow. Therefore, decreasing the number 
of the inter cache-line sequential flow substantially reduces the 
cache power consumption. Another way of reducing the number 
of times the inter cache-line sequential flow occurs is increasing 
the size of cache-lines. However, increasing the cache-line size 
increases the number of off-chip memory accesses in case of a 
cache miss. Our algorithm presented in the next section takes this 
trade-off into account and explores different cache-line sizes to 
minimize the total power consumption of the memory hierarchy. 
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Figure 6.  Power break down for a cache 

2.4 Concurrent Optimization of Cache 
Configuration and Code Placement 

We first explain the idea behind the conventional code 
placement technique. Consider a direct-mapped cache of size C (C 
= 2m words) whose cache line size is L words, i.e., L consecutive 
words are fetched from the memory on a cache read miss. In a 
direct-mapped cache, the cache line containing a word located at 
memory address M can be calculated by (M/L mod C/L). 
Therefore, two memory locations Mi and Mj will map onto the 
same cache line if the following condition holds, 
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The above equation can be written as:  

( ) ( )LCnMMLCn ji +⋅<−<−⋅ )(                      (1) 

where n is any integer. If basic blocks Bi and Bj are inside a loop 
whose iteration count is N and their memory locations Mi and Mj 
satisfy condition (1), cache conflict misses occur at least N times 
when executing the loop [19]. This can be extended for a W-way 
set associative cache. A cache conflict miss occurs in a W-way set 
associative cache if more than W different addresses with distinct 
M/L values satisfy condition (1) are accessed in a loop; note M 
is the memory address. Therefore, the number of cache conflict 
misses can be easily calculated from cache parameters (i.e., 
cache-line size, the number of cache-sets and the number of 
cache-ways), the location of each basic block in the memory 
address space and the iteration count for each closed loop for a 
target application program [11]. Several code placement 
techniques have used the above before [9][10][11][12][13] and 
many cache optimization techniques have been proposed for 
reducing the sum of the power consumption of the off-chip 
memory and the cache [4][5][6][7][8]. However, to the best of our 
knowledge, there is no technique for simultaneously performing 
code placement and cache configuration optimization. Therefore, 
conventional cache optimization flows need to perform several 
steps iteratively to find the optimum cache configuration and 
generate object code for it (see Figure 7). 

Code Placement     

(Compiler Optimization)

Cache Configuration

Optimization      

Power & Performance

Estimation        

satisfied?

No

Yes
 

Figure 7.  A conventional cache optimization flow 

Our approach optimizes cache configuration and code placement 
simultaneously to reduce the dynamic and leakage power 
consumption of cache memory and off-chip memory for a given 
performance constraint. We used the method presented in [11][13] 
to analytically calculate the number of cache misses based on (1). 
Our algorithm calculates the number of cache conflicts in each 
cache-set for a given associativity (i.e., the number of ways). 

3. PROBLEM DESCRIPTION 
3.1 Notation 
• Ememory, Eway, and Etag: The energy consumption per access 

for the main memory, a single cache-way, and a cache-tag 
memory, respectively. 

• Pstatic: The static power consumption of the main memory. 
• TEmemory and TEcache: The total energy consumption of the 

main memory (i.e., the off-chip memory) and the cache (i.e., 
cache-tag and cache-way), respectively. 

• Pleakage: The leakage power consumption of a 1-byte cache 
memory block. 

• TEleakage: The total energy consumption of the cache 
memory due to leakage. 

• Wbus: The memory access bus width (in byte). 
• Winst: The size of an instruction (in byte). 
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• Scache: The number of sets in a cache memory. 
• Caccess: The number of CPU cycles required for a single 

memory access. 
• Cwait: The number of wait-cycles for a memory access. 
• Fclock: The clock frequency of CPU. 
• nline: The line size of the cache memory (in byte). 
• ai: The number of ways in the ith cache-set. 
• Nmiss: The number of cache misses. 
• Ninst: The number of instructions executed. 
• Xi: The number of “full-way accesses” for the ith cache-set. 

In the “full-way” access, all cache-ways and cache-tags in 
the target cache-set are activated. A “full-way access” is 
necessary in case of an inter-cache-line sequential flow or a 
non-sequential flow. Otherwise, only a single cache-way is 
activated. 

• Ttotal, and Tconst: The total execution time and the constraint 
on it. 

• Ptotal: The total power consumption of the memory system. 
 
We assume Ememory, Eway, Etag, Pstatic, Pleakage, Wbus, Winst, Scache, 
Fclock, Caccess, Cwait, and Tconst are given parameters. The 
parameters to be determined are nline and ai. Nmiss, Xi, and Ttotal are 
functions of the code placement, Wbus, Winst, nline and ai. We can 
find Nmiss, Ninst, and Xi by using a method presented in [11][13]. 
Since the cache is usually divided into sub-banks and only a 
single sub-bank is activated per access [20], Eway is independent 
of nlines. 

3.2 Problem Formulation 
The problem can be formally defined as follows:  
“For given values of Ememory, Eway, Etag, Pstatic, Pleakage, Wbus, Winst, 
Scache, Fclock, Caccess, Cwait, and the original object code, determine 
code placement, nline and ai to minimize Ptotal, the total power 
consumption of the memory hierarchy under the given time 
constraint Tconst.” 
Note that Ttotal, TEmemory TEcache,TEleakage, and Ptotal  can be 
calculated using the following formulas: 
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3.3 Algorithm 
Our algorithm starts with an original cache configuration 

(nlines=32, Scache=8, ai=64). In the next step, our algorithm finds 
the optimal location of each block of the application program in 
the address space. This is done by changing the order of placing 
functions in the address space and finding the best ordering. For 

each ordering, the algorithm greedily reduces the energy by 
iteratively finding a cache-set for which reducing the number of 
ways by a factor of 2 gives the largest power reduction. The 
power consumption (Ptotal) and the run-time (Ttotal) are found by 
calculating the number of cache misses for a given associativity 
using the technique presented in [11][13]. The calculation can be 
done without simulating the cache and by analyzing an iteration 
count of each loop and the location of each basic block in the 
address space for the application program. The ordering which 
gives the minimum energy is selected along with the optimal 
number of ways for each cache-set. The algorithm performs the 
above for different cache-line sizes and continues as long as the 
power consumption reduces. Note the ordering of functions is 
fixed when the cache-line sizes are changed. This is a good 
simplification because the optimum ordering of functions usually 
does not change widely when cache-line sizes vary by a factor of 
2. The computation time of the algorithm is quadratic in terms of 
the number of functions and linear in terms of the number of loops 
of the application program. 

 

Procedure MinimizePower 
Input: Ememory, Eway, Etag, Pleakage, Wbus, Winst, Scache, Fclock, Caccess, 

Cwait, Tconst, Pstatic, and original object code 
Output: nline, a set of ai, and order of functions in the optimized 
object code 
 
Let L be the list of functions in the target program sorted in 
descending order of their execution counts; 

Pmin = Tmin = infinity; 
for each nline ∈  {32,64,128,256,512} do 

Pinit = Pmin;   Tinit = Tmin; 
repeat 

Pmin = Pinit;   Tmin = Tinit; 
for (t=0; t<|L|; t++) do 

p = L[t]; 
for each p’ ∈  L and p’≠ p do 

Insert function p in the place of p’; 
Set all ai to 64 and calculate Ptotal and Ttotal; 
repeat 

1. Find a cache-set for which reducing the 
number of cache ways by a factor of 2 results 
in the largest power reduction; 

2. Divide the number of cache-ways for the 
cache-set by 2 and calculate Ptotal and Ttotal; 

until ((Ptotal stops decreasing) or (Ttotal > Tconst)) 
if (Ptotal ≤ Pmin & Ttotal ≤ Tmin) then 

Pmin = Ptotal;    Tmin = Ttotal;    BESTlocation = p’; 
end if 

end for 
Put function p in the place of BESTlocation 

end for 
until (Pmin stops decreasing) 
if (Pinit == Pmin & Tinit ≤ Tconst) then 

Output BESTline, BESTways and BESTorder;   Exit; 
else 

BESTline = nline;                 BESTways = a set of ai; 
BESTorder = order of functions; 

end if 
end for 

end Procedure 
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4. EXPERIMENTAL RESULTS 
4.1 Experimental Setup 

We calculated Ememory, Eway, Etag, Pleakage, and Pstatic for the 
system in Figure 2. The cache size, the number of cache sets, the 
number of cache-ways, the cache line size, and the clock 
frequency of the original CPU are assumed to be 16KB, 8, 64, 32-
byte, and 250MHz, respectively [2]. Since the outputs of flash 
memories used in [14] and [15] are 16-bit, we assumed Wbus=16 in 
our experiment. The bit width of instructions is 32, therefore, Winst 
= 4. The number of CPU cycles required for a memory access and 
the number of wait-cycles for a memory access are assumed to be 
4 (i.e., Caccess = Cwait = 4), since the clock frequency of the flash 
memory and the processor core are 80MHz and 250MHz, 
respectively. We considered two scenarios, low leakage and high 
leakage with the leakage power of the cache memory equal to 5% 
and 10% of the dynamic power, respectively. We used three 
benchmark programs; Compress version 4.0, JPEG encoder 
version 6b, and MPEG2 encoder version 1.2. Table I shows the 
number of functions, basic blocks and instructions for each 
benchmark program. We used GNU C compiler and debugger for 
ARMv4T architecture to generate address traces. 

TABLE I.  Specification of benchmark programs 
 # Functions  # Basic blocks # Instructions
Compress 160 2,281 10,716
JPEG_enc 353 6,451 30,867
MPEG2enc 256 6,428 33,850

 

4.2 Results 
We compared the following four techniques, (a) performing 

cache sizing for uniform cache, (b) performing cache sizing for 
uniform cache and the conventional code placement after that, (c) 
performing our code placement and cache sizing for a uniform 
cache concurrently, and (d) concurrent optimization for non-
uniform cache. Redundant cache-way and cache-tag access 
elimination (ILWM) [17] was used for all four techniques. The 
number of cache-sets in all experiments was 8. 

0

2

4

6

8

0

10

20

30
Compress JPEG_enc MPEG2enc

Po
w

er
 c

on
su

m
pt

io
n 

[m
W

]

(a)(b)(c)(d) (a)(b)(c)(d) (a)(b)(c)(d) (a)(b)(c)(d) (a)(b)(c)(d)(a)(b)(c)(d)

Optimization w/o time constraint

Optimization w/  time constraint

Low Leak High Leak Low Leak High Leak Low Leak High Leak

Compress JPEG_enc MPEG2enc

(a)(b)(c)(d) (a)(b)(c)(d) (a)(b)(c)(d) (a)(b)(c)(d) (a)(b)(c)(d)(a)(b)(c)(d)
Low Leak High Leak Low Leak High Leak Low Leak High Leak

Leakage power consumption of cache
Dynamic power consumption of cache
Power dissipation of main memory  

 
Figure 8.  Comparison of different techniques 

The power consumption results optimized without and with a time 
constraint are shown in Figure 8. The time constraint Tconst is set 
to the execution time of the target application program with the 
original cache configuration. “Low Leak” and “High Leak” in 
Figure 8 correspond to low- and high-leakage scenarios, 
respectively. 

Since conventional code placement techniques reduce the 
number of cache misses only, they may increase the number of 
cache-way and tag accesses if the processor uses the ILWM 
technique [17]. For example, compare case (a) and (b) in the time-
constrained optimization results in Figure 8. On the other hand, 
our methods (c) and (d) always reduce the dynamic power 
consumption of the cache memories. Optimizing without a time-
constraint reduced the power consumption for “Compress” by 
29% (17% on an average), while in presence of a time-constraint, 
up to 76% (52% on an average) reduction in the power 
consumption was achieved. The reason for better results for time-
constrained case is that it requires higher number of ways. 
Therefore, there is more opportunity for our method to reduce the 
average number of cache-ways accessed. 

Table II shows the number of ways, cache-line size and cache 
size (in byte) in the high-leakage case in our experiment. As one 
can see, in many cases our approach (d) reduces the effective size 
(the total size of blocks used) of the cache memory as well. 

TABLE II.  The cache configuration results 
Compress JPEG_enc MPEG2enc  

w/o 
Tconst 

w/ 
Tconst

w/o 
Tconst 

w/ 
Tconst 

w/o 
Tconst 

w/ 
Tconst 

nline 256 32 128 32 64 32 
ai 4 32 8 64 8 64 

(a)
and
(b) size 8K 8K 8K 16K 4K 16K

nline 256 64 256 64 512 64 
ai 4 16 4 64 4 64 

(c) size 8K 8K 8K 32K 16K 32K
nline 256 64 256 64 128 64 

a0...7

1,4, 
4,4, 
4,4, 
4,2 

8,8,
8,8,
8,8,
8,8

4,4, 
4,4, 
4,4, 
2,4 

64,64, 
32,16, 
32,32, 
16,16 

8,8, 
16,16,
8,8, 
2,4 

32,32,
64,32,
64,64,
64,64

(d) size 3.38K 4K 7.5K 17K 8.75K 26K
 

Since the behavior of a program depends on its input values, an 
object code and cache configuration optimized for a specific input 
value is not necessarily optimal for the other input values. To see 
the effect of changing the input value on the cache behavior, we 
calculated the power consumption of memory systems for 
different input values. We calculated the following three values 
for six different input values:  
1. the power consumption for the original object code executed 

with a uniform cache optimized for Data0. 

2. the power consumption (Ptotal) for the optimized object code 
executed with a non-uniform cache optimized for Data0. 
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3. the total execution time (Ttotal) for the optimized object code 
running on a processor with the non-uniform cache. The 
performance value is normalized to the performance for Data0. 

Figure 9 shows the results for six different input values for each 
benchmark program. The left and right vertical axes represent the 
power consumption of memories and the normalized performance 
of a processor with the non-uniform cache, respectively. The 
object code and cache configuration were optimized for Data0 
using our algorithm for non-uniform caches. As one can see, the 
object code and the cache configuration optimized for Data0 
achieve very good results for other input values as well. 
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Figure 9.  Input Data Dependency 

Table III shows computation time (in second) of four 
optimization methods executed on an UltraSPARC-II dual CPU 
workstation running Solaris8 at 450MHz with 2GB of memory. 
Since the optimization time in some cases is very large, our future 
plan is substantially reducing it. 

TABLE III.  CPU-time for cache optimization (second) 
Compress JPEG_enc MPEG2enc  

w/o 
Tconst 

w/ 
Tconst 

w/o 
Tconst 

w/ 
Tconst 

w/o 
Tconst 

w/ 
Tconst 

(a) < 1 < 1 1 1 2 2
(b) 15 42 103 474 710 1,628
(c) 62 129 812 1,851 1,331 4,289
(d) 364 351 2,783 5,391 8,329 10,413

 

5. SUMMARY AND CONCLUSIONS 
In this paper, we proposed the non-uniform cache architecture, 

a code placement technique for reducing the power consumption 
of caches, and an algorithm for simultaneous cache configuration 
optimization and code placement. In future we plan to enhance 
our method by dynamically disabling cache-ways during the 
course of running an application program. Our current algorithm 
sets the value of nline and ai to powers of 2 only. This is done to 
make the search easy. In future we plan to improve the power 
saving by relaxing this constraint on the values of nline and ai. 

6. ACKNOWLEDGMENTS 
We would like to thank Tom Sidle, the VP of advanced CAD 
Technology at Fujitsu Laboratories of America for supporting this 
research. 

7. REFERENCES 
[1] S. Segars, “Low Power Design Techniques for 

Microprocessors”, ISSCC Tutorial note, February 2001. 
[2] ARM Ltd., “ARM Processor Core Overview”, 

http://www.arm.com/products/CPUs/ 
[3] J. Montanaro et al., “A 160 MHz, 32b 0.5W CMOS RISC 

Microprocessor”, In Proc. of ISSCC, February 1996. 
[4] C. Su and A. Despain, “Cache Design Trade-offs for Power 

and Performance Optimization: A Case Study”, In Proc. of 
ISLPED, pp.63-68, August 1995. 

[5] P. Hicks, M. Walnock, and R. M. Owens, “Analysis of 
Power Consumption in Memory Hierarchies”, In Proc. of 
ISLPED, pp.239-242, August 1997. 

[6] Y. Li, and J. Henkel, “A Framework for Estimating and 
Minimizing Energy Dissipation of Embedded HW/SW 
Systems”, In Proc. of DAC, pp.188-193, June, 1998. 

[7] W. T. Shine, and C. Chacrabarti, “Memory Exploration for 
Low Power, Embedded Systems”, In Proc. of DAC, pp.140-
145, June, 1999. 

[8] A. Malik, B. Moyer and D. Cermak, “A Low Power Unified 
Cache Architecture Providing Power and Performance 
Flexibility”, In Proc. of ISLPED, pp.241-243, July 2000. 

[9] S. McFarling, “Program Optimization for Instruction 
Caches”, In Proc. of Int’l Conference on Architecture 
Support for Programming Languages and Operating Systems, 
pp.183-191, April 1989. 

[10] W. W. Hwu and P. P. Chang, “Achieving High Instruction 
Cache Performance with an Optimizing Compiler”, In Proc. 
of ISCA, pp.242-251, May 1989. 

[11] H. Tomiyama and H. Yasuura, “Optimal Code Placement of 
Embedded Software for Instruction Caches”, In Proc. of 
European Design and Test Conference, pp.96-101, March, 
1996. 

[12] A. H. Hashemi, D. R. Kaeli, and B. Calder, “Efficient 
Procedure Mapping Using Cache Line Coloring”, in Proc. of 
Programming Language Design and Implementation, pp.171-
182, June, 1997. 

[13] S. Ghosh, M. Martonosi, and S. Malik, “Cache Miss 
Equations: A Compiler Framework for Analyzing and 
Tuning Memory Behavior”, ACM Trans. on Programming 
Languages and Systems, vol.21, no.4, pp.703-746, July, 1999. 

[14] Micron Technologies Inc., “Low Power Flash”, 
http://www.micron.com/products/flash/lowpower/ 

[15] Fujitsu Ltd., “128Mbit (x16bit) Burst Mode Flash Memory 
MBM29BS12DH”, 
http://edevice.fujitsu.com/fj/MARCOM/find/21-2e/ 

[16] D. A. Patterson, et al., “Architecture of a VLSI instruction 
cache for a RISC”, In Proc. 10th Annual Int’l Symposium on 
Computer Architecture, vol. 11, no. 3, pp.108-116, June, 
1983. 

[17] R. Panwar, and D. Rennels, “Reducing the Frequency of Tag 
Compares for Low Power I-Cache Design”, In Proc. of 
ISLPED, pp.57-62, August 1995. 

[18] M. Muller, “Power Efficiency & Low Cost: The ARM6 
Family”, In Proc. of Hot Chips IV, August 1992. 

[19] H. Hill and A. J. Smith, “Evaluating Associativity in CPU 
Cache”, IEEE Trans. on Computers, Vol. 38, No. 12, 
pp.1612-1630, December, 1989. 

[20] K. Ghose and M. B. Kamble, “Reducing Power in 
Superscalar Processor Caches Using Subbanking, Multiple 
Line Buffers and Bit-Line Segmentation”, In Proc. of 
ISLPED, pp.70-75, August 1999. 

368


