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Abstract 

This study proposes a numerical approach for predicting the injection molding process of 

short-fiber-reinforced plastics using the moving particle semi-implicit (MPS) method, which 

is a particle-simulation method. Unlike conventional methods using orientation tensors, this 

approach represents all fibers and resin as an assembly of particles, and automatically 

analyzes the interaction between fiber and resin and between fibers. In addition, this method 

can follow the motion of a specific fiber, which is a significant advantage over orientation 

tensors. This study simulated the injection molding of short-fiber-reinforced plastics; the 

thermoplastic resin was considered as an incompressible viscous fluid and the fibers were 

modeled as rigid bodies. The numerical result illustrated that the molding material was 

unidirectionally reinforced by short fibers since the fibers rotated and were aligned parallel to 
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the flow direction due to the velocity gradient near the wall boundary. Moreover, the 

stagnation of resin at a corner was predicted. The results agreed well with previous studies, 

and the present approach was confirmed. Beyond this, we predicted the accumulation of 

fibers near the wall due to the velocity gradient, which could not be represented by 

conventional simulations based on orientation tensors. 

 

Keywords: Polymer-matrix composites (PMCs), Short-fiber composites, Injection molding, 

Numerical analysis, Microstructures. 

 

1. Introduction 

Injection-molded short-fiber-reinforced plastics have various advantages, such as low 

molding cost, high molding flexibility, and a fast molding cycle. They have been used in 

various applications, such as components of automobiles, housings for electrical devices, and 

internal structural components of precision instruments, because of their stiffness and strength. 

Increasing usage of these composites is now expected, taking advantage of their benefits. 

The mechanical properties of injection-molded short-fiber-reinforced plastics are 

significantly dependent on the reinforcing structure in the material, i.e., the length, 

distribution, and orientation of the reinforcing fibers. The microscopic structure is generally 

governed by the molding process. If relatively long fibers (e.g., a few millimeters) are used 

for a thinner mold, fibers accumulate and fracture during resin flow, and the obtained 

mechanical properties are often less than the intended values. Accordingly, many studies have 

been conducted to clarify the process of injection molding of short-fiber-reinforced plastics. 

The orientations of reinforcing fibers and their rheological properties have frequently been 

studied. Advani and Tucker [1] introduced orientation tensors to efficiently represent fiber 
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orientations. They formulated the equation of change for the orientation tensors by combining 

the equation of fiber motion with the continuity equation for the total amount of fibers. In 

addition, methods to approximate the fourth-order tensor from the second-order tensor were 

introduced to calculate the rate of change in the second-order tensor, and the prediction 

accuracy of elastic constants was discussed using the approximated fourth-order tensor. Since 

the orientation tensors provide a convenient way to represent the fiber orientation, they have 

been widely used for predicting the microscopic structure [2-8]. Gupta et al. [2] calculated the 

fiber orientation using the second-order tensor and considering the interaction between fibers, 

and compared the calculation with an experiment with injection-molded plates. In sum, 

numerical approaches to predicting fiber orientations have been developed based on the 

orientation tensors and fluid dynamics. However, these approaches ignore fiber motion in the 

flow analysis, i.e., the flow field is first calculated without fibers and the fiber orientation is 

then estimated from the obtained flow field. This approach could not represent the actual 

phenomenon with high fiber content. Chung and Kwon [3] formulated a prediction of fiber 

orientation that was combined with a flow analysis in order to take the interaction between the 

fiber and the flow into account, and demonstrated the simulation of injection molding using a 

thin plate mold. Furthermore, the estimation of rheological properties considering the 

viscoelastic behavior of resin [4], the improvement of interaction between fibers for a large 

fraction of fibers [5], and improvement in the approximation of the fourth-order tensor [6,7] 

have been discussed. Although the methods based on the orientation tensors could easily 

calculate the fiber orientation, they could not represent a more detailed microscopic structure 

like the distributed state of the fibers. The orientation tensor did not model the individual 

fibers, and thus the motion of a specific fiber could not be obtained. 

Understanding the mechanisms of fiber motion in resin flow is important for discussing 
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phenomena concerning fibers such as accumulation. Nonuniform distribution of fiber content 

is generated when a flow path is chocked with fibers. In addition, fiber accumulation induces 

deformation and fracture of fibers that significantly affect the quality of molded materials. 

Yamamoto et al. [8-10] proposed a particle simulation method for analyzing the fiber motion: 

they modeled the fibers as an assembly of particles and solved the equations of motion for 

each particle. They predicted the microscopic structure and rheological properties of a molded 

material. Their approach could represent the accumulation, deformation, and fracture of fibers 

because the individual fibers were modeled. Furthermore, analysis of high fiber content was 

made possible by considering the interactions within a fiber and between fibers. However, this 

approach analyzed the flow and the fiber motion separately, and the change in the flow field 

due to the fiber orientation could not be represented. 

If the motion of the fibers and resin is accurately predicted during the molding process, it 

becomes possible to improve the material properties, in addition to predicting them, through 

control of the molding process. This study proposes a numerical simulation for injection 

molding of short-fiber-reinforced plastics using the moving particle semi-implicit (MPS) 

method [12-14], which represents a continuum as an assembly of the particles and analyzes 

the motion of the particles. This particle-simulation method represents all fibers and resin by 

particles, and the interaction between fibers is thus automatically considered. Moreover, this 

method can follow the motion of a specific fiber and reproduce the accumulation of fibers, 

both of which were impossible for simulations based on orientation tensors. Although this 

study assumes fibers to be rigid bodies for simplicity, fiber fractures during resin flow will be 

reproduced by representing fibers as elastic bodies. This study first introduces the numerical 

approach for predicting the molding process of short-fiber-reinforced plastics using the MPS 

method. Some simulated results are then demonstrated for injection molding with plate and 
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other molds, and our proposed approach is verified. 

 

2. Moving particle semi-implicit (MPS) method 

2.1 Models for differential operators 

In particle-simulation methods, a continuum is represented by an assembly of particles and 

the governing differential equations are discretized by these particles. This section describes 

the models for differential operators represented by the interaction between neighboring 

particles [14]. The discretization approach using particles basically differs from mesh-based 

methods such as the finite-element method and the finite-difference method. 

A particle nearer to particle i is assumed to have a greater influence on particle i, and a 

weight function w(r) is defined as 
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where r is the distance from particle i. This function represents the magnitude of the influence 

on particle i. As indicated by Eq. (1), the influences of particles within the radius re are 

considered (Fig. 1). The particle number density n is defined by the sum of the weight 

function: 
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where r denotes the position vector, and the subscript is the particle number. The particle 

number density is proportional to the density of the fluid. 

This study assumes the resin flow to be an incompressible flow. The calculation for 

incompressible flow uses the gradient and the Laplacian operators, as described later. When 

particle i and a neighboring particle j have scalar variables i  and j , the gradient model 

  at particle i is given by 
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Here, d is the dimension number, and n0 is the averaged particle number density. The gradient 

model represents the weighted mean of the gradient vector between two particles i and j 

considering the dimensional information (Fig. 2a). The Laplacian model 2  is written as 
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This model assumes that part of the variable   of particle i is divided among the 

neighboring particles considering the weight function (Fig. 2b). A coefficient λ is introduced 

to cause the increase in statistical dispersion to conform to the analytical solution. 
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Physical quantities such as velocities are obtained by applying the differential-operator 

models, Eqs. (3) and (4), to the governing equations. 

 

2.2 Governing equations for incompressible flow 

The governing equations for incompressible flow are the conservation of mass and the 

Navier-Stokes equation. 
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Here, ρ is density, u is the velocity, P is the pressure, ν is the dynamic coefficient of viscosity, 

and g is the acceleration of gravity. D/Dt denotes a Lagrangian differential in the 

particle-simulation method. The first term of Eq. (7) is the pressure term, the second is the 

viscosity term, and the third is the gravity term. The equation for conservation of mass for 
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compressible flow is used instead of Eq. (6) to employ the semi-implicit simulation algorithm 

described later. 

 0 u
Dt

D
        (8) 

This study analyzed the reinforcing fibers by assuming rigid bodies. The interaction 

between the fluid and the rigid bodies is considered to be small, and the motion of particles 

consisting of rigid bodies is analyzed by Eqs. (7) and (8) for fluid. Next, the relative positions 

of particles for a rigid body are corrected to restore its original shape, preserving the changes 

in the coordinates of the gravity point and the rotation angle. This operation corresponds to 

analyzing the motion of the gravity point of a rigid body by integrating the forces acting on 

the rigid body from the fluid and other rigid bodies. The above method provides explicit 

interaction (weak coupling) between the incompressible fluid and the rigid bodies [14]. 

 

2.3 Numerical algorithm 

This section describes the analysis procedure for solving the governing equations. When 

the position ri
k, velocity ui

k, and pressure Pi
k of particle i are known, where k denotes the time 

step, Eq. (7) can be divided into two parts: explicitly calculated terms and an implicitly 

calculated term. First, the viscosity term and the gravity term are explicitly integrated, and a 

temporary velocity u* and position r* are obtained. 

  kk t guuu  2*         (9) 

 ** urr tk          (10) 

Here, Δt is the time increment. The Laplacian model, Eq. (4), is applied to calculate the 

viscosity term. Although the particle number density must be constant because of the 

condition of constant density, the temporary particle number density n* differs from the 
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constant value n0 after the explicit calculation. Next, the particle number density is corrected 

to n0 by modifying the pressure distribution in the following implicit calculation. The particle 

number density and the velocity at time step (k+1) are written as 

 n0  nk1  n*  n ,   uk1  u*  u ,     (11) 

where n’ and u’ are the amount of correction for the particle number density and velocity. 

Here, the correction of the velocity is assumed to be generated by the pressure term of Eq. (7). 
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The following equation is then obtained by considering the mass conservation for 

compressible flow, Eq. (8), and the fact that the density is proportional to the particle number 

density. 
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Equation (12) is substituted into Eq. (13), resulting in a system of linear equations about the 

unknown pressure Pi
k+1 using the Laplacian model. 

     
  0

0
*

2
0**11

0

12 2

n

nn

t
wPP

n

d
P i

ij
ij

k
i

k
j

k

i




 


 


rr    (14) 

The pressure is implicitly solved, and the acceleration Du/Dt at time step k is obtained by 

substituting the calculated pressure into Eq. (7). The velocity u and the position r are finally 

updated using the Newmark method. 

The translational and rotational motions of rigid fibers are interacted explicitly with resin 

flow. The particles within rigid bodies are first analyzed by the above algorithm for 

incompressible flow in each time step. After finishing the flow analysis at each time step, the 

relative positions among the particles of a rigid body are corrected to restore the original 

shape. Here, changes in the coordinates of the gravity point and the rotation angle are 
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preserved. 

A flowchart of the analysis is presented in Fig. 3. After inputting the initial conditions, the 

gravity term and the viscosity term are first explicitly calculated for all particles, and then the 

particles are temporarily moved. Here, the mass-conservation condition cannot be satisfied by 

the temporary geometry. The Poisson equation for pressure is then implicitly solved to satisfy 

the mass conservation; this study used the ICCG method to solve Eq. (14). Once the pressure 

is obtained, the acceleration is then calculated by Eq. (7), and the velocity and coordinate of 

each particle are updated using the Newmark method. Thus, the resin flow is analyzed by this 

semi-implicit simulation algorithm. Finally, the relative positions among the particles of a 

rigid body are modified to restore the original shape of the rigid body. 

 

3. Numerical analysis 

3.1 Analytical model 

A two-dimensional analysis for injection molding of short-fiber-reinforced plastics was 

conducted. The analysis model is depicted in Fig. 4a. Polypropylene (PP) was assumed to be 

an incompressible viscous fluid (i.e., a Newtonian fluid), and glass fibers (GF) were modeled 

by rigid bodies. These materials, allocated in a resin bath 30 mm wide, were pushed by a 

moving rigid wall to pass a gate 6 mm wide and to fill a plate mold 80 mm long and 4 mm 

wide. The particle size was 0.25 mm; there were 18,066 particles in this model. The density of 

the resin was 900 kg/m3, and its coefficient of viscosity was 900 Paꞏs [15]; the density of the 

glass fiber was 2540 kg/m3. The weight fraction of fibers was 10%, which corresponded to a 

3.8% volume fraction. The length of all fibers was assumed to be 1 mm. The fibers were 

positioned randomly and were aligned in the direction vertical to the injection (y-direction) as 

the initial condition. 



 10

Many corners and branches exist in practical injection molding. In order to predict the resin 

flow at these parts, a corner model (Fig. 4b, 18,066 particles) and a branch model (Fig. 4c, 

19,026 particles) were also analyzed. 

The rigid wall was moved at an initial speed of 1 m/s to fill the mold. Particles with 

unrealistic pressure increased with this injection speed, and practical results could not be 

obtained. The injection speed was then decreased to 60% of the original value when the 

maximum pressure reached the baseline, and the maximum value was set to the baseline. 

Thus, the molding process was adjusted by stepwise decreases in the injection speed 

according to the increase in pressure. 

 

3.2 Analytical results and discussion 

Figure 5 depicts the predicted resin flow during injection into a plate mold. The injection 

speed gradually decreased with increasing pressure until the resin passed the gate (0.015 s). 

The resin started to fill the mold after 0.02 s and completely filled it at 0.16 s. Fibers were 

aligned with the flow (x) direction when the resin passed the gate and were rotated in the 

y-direction when the resin reached the bottom wall of the inlet. The flow direction changed 

during the interval from 0.025 to 0.03 s. The behavior of the fibers injected afterward was the 

same as that of the foregoing fibers. Therefore, fibers aligned in the y-direction were observed 

in the filled materials (0.06 to 0.12 s). This fiber motion was caused by the velocity 

distribution due to viscosity; the flow velocity was low near the wall and increased with 

distance from the wall, as indicated in Fig. 5b. The fibers were then rotated to the flow 

direction and were aligned unidirectionally [2,16]. In the case of three-dimensional 

simulations, resin flow in the depth (z) direction of the mold could not be generated if the size 

in the z-direction was similar to that of the gate, and results similar to Fig. 5 would be 
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obtained. When the depth was great compared to the gate, flow in the z-direction would occur, 

and fibers would be moved by the same mechanism as in Fig. 5. In this case, the fibers will be 

aligned in the yz-plane. 

In the predicted resin flow depicted in Fig. 5, fibers accumulated near the side wall as seen 

in the magnified view (Fig. 6). The flow velocity was low near the wall due to viscosity, and 

fibers #2 and #3 moved slowly. The fibers farther from the side wall (#1) overtook the fibers 

#2 and #3 because of their greater velocity. These fibers are positioned within a short distance 

in Fig. 6, and the backward #1 fiber collided with fibers #2 and #3. Free motion of these 

fibers was prevented, and the fibers accumulated. This phenomenon could not be represented 

by any analysis based on the fiber-orientation tensors [1-7]. 

Figure 7 depicts the resin flow and velocity distribution in a mold with corners at 0.18 s 

when the mold was almost filled. Similarly to the plate mold depicted in Fig. 5, the fibers 

were almost aligned with the flow direction, and were oriented parallel to the side wall of the 

flow path (Fig. 7a). Moreover, the velocity was almost zero at the corner, and stagnation of 

resin was observed as depicted in Fig. 7b. These predictions agreed with the resin flow 

observed by Yamamoto et al. [10]. Stagnation of fibers did not appear at the corner since the 

fiber content was low in this simulation. 

The resin flow and velocity distribution in a mold with branches are depicted in Fig. 8. 

Fibers moved forward and were aligned parallel to the side wall before reaching the branch. 

However, unlike the resin flow in the plate and corner molds, some fibers (indicated by 

arrows in Fig. 8a) had a large angle from the flow direction after passing the branch. The 

velocity vector was inclined from the original flow direction (y) to the branched direction (x), 

as indicated in the velocity distribution in Fig. 8b. Thus, this velocity distribution yielded 

some inclined fibers near the branch, although the fibers gradually aligned with the side wall 
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after passing the branched flow path. 

 

4. Conclusions 

This study proposed a numerical analysis to predict resin flow and fiber motion during 

injection molding of short-fiber-reinforced plastics using the moving particle semi-implicit 

(MPS) method, which is a particle simulation method. We investigated the fiber motion in 

detail and compared predictions with previous studies. The conclusions are summarized 

below. 

1. This analysis represented the fiber motion by actually modeling the fibers. Individual 

fibers were unidirectionally oriented, since fibers were rotated to the flow direction 

because of the velocity gradient caused by viscosity. 

2. Backward fibers collided with forward-moving fibers near the wall due to the velocity 

distribution in the width direction of the flow path, and an accumulation of fibers was 

predicted. This phenomenon could not be represented by conventional approaches based 

on fiber-orientation tensors. 

3. In a mold with corners, fibers almost aligned with the flow direction, and stagnation was 

observed at the corner. 

4. Fibers that had a large inclined angle from the wall were predicted near the branch 

because of the velocity distribution. 

These conclusions agreed with previous studies, and the proposed simulation was 

confirmed. Furthermore, this method reproduced an accumulation of fibers that could not be 

illustrated by conventional approaches. In addition, depending on the molding conditions, 

variations in fiber length can appear in molded materials due to fiber breakages. This 

phenomenon would influence the flow process and the local microscopic structure, and 
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eventually the mechanical properties of the molding materials. A particle-simulation method 

has an absolute advantage over conventional approaches: variations in short fibers can be 

realistically modeled, and their influence is automatically analyzed. Thus, the present 

simulation method can be a strong candidate for predicting molding processes. 
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Figure captions 

Figure 1 Schematic diagram of the interaction between neighboring particles. 

Figure 2 Particle-interaction models for differential operators. 

Figure 3 Flowchart of the simulation. 

Figure 4 Particle model for injection molding with (a) a plate mold, (b) a mold with a corner, 

and (c) a mold with a branch. PP and GF denote polypropylene and glass fiber. 

Figure 5 Simulated results of injection into the plate mold. 

Figure 6 Fiber accumulation near the wall. Fibers #2 and #3 near the wall almost stopped 

during the small time increment Δt. 

Figure 7 Simulated results of injection into a mold with a corner. 

Figure 8 Disturbed fiber orientation near a branch. Arrows in Fig. (a) show the fibers 

inclined from the flow direction after passing the branches. 
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