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Abstract— This paper models the video quality,

which focuses on the effects of computation precision

by combining subjective-objective metric. The moti-

vation behind the research is to bring quality-driven

design into effect for video applications. We change

the computation-precision of IDCT, the kernel pro-

gram of MPEG-2 video decoder and get the exper-

imental computation-precision-oriented video quality

model. The experimental results show that reducing

computation precision while providing certain video

quality is a perspective way to reduce cost for embed-

ded system design.

I. Introduction

Modern LSI technology enables implementation of a
complex system on a single chip. Progress in LSI tech-
nology is extremely fast and it is outstripping the system
designers’ abilities to make use of the created opportu-
nities. The quality of the system LSI, the power con-
sumption, production cost and time-to-market tends to
be more limited by the design methods and tools. Sub-
stantial improvement can only be achieved through de-
velopment and application of a new generation of more
suitable design paradigms, methods and tools. In this
situation, quality-driven design is presented.

The quality-driven design is a kind of user-application-
oriented design, whose process is evolutionary and it ba-
sically consists of building the quality models, using them
for constructing, selecting and improving the design solu-
tions, which satisfy the users’ requirements and are ”to-
tally” optimal for applications. The key techniques for
quality-driven design are quality modeling, quality mea-
suring, and design decision-making.

In order to bring the quality-driven design into effect,
the definition of quality has to be solved. As we known,
until now none of the exist quality definition is precise
enough to enable the systematic consideration, measure-
ment and comparison of quality, which are necessary for
quality-driven design. Most of them focus exclusively on
a product being designed and do not account for design.
This paper focuses on quality-driven design for video ap-

plications, a case study of quality-driven design. As far as
we know, this paper first models the video quality, which
focuses on the effects of computation precision.

The advent of digital video systems has exposed the
limitations of the techniques traditionally used for video
quality measurement. For conventional analog video sys-
tems there are well-established performance standards.
They rely on particular test signals and measurement pro-
cedures to determine parameters such as differential gain,
differential phase or waveform distortion [4]. While video
compression, storage, and transmission system has not
invalidated these traditional parameters, it has certainly
made their connection with perceived video quality much
more tenuous. The designers of compression algorithms
have had to resort to subjective viewing tests in order to
obtain reliable ratings for the quality of compressed im-
ages or video [5]. However, these tests are complex and
time-consuming.

Looking for faster alternatives, researchers have turned
to simple error measure such as root mean squared er-
ror(RMSE) or peak signal-to-noise ratio(PSNR), suggest-
ing that they would be equally valid. However, these sim-
ple error measures operate solely on a pixel-by-pixel ba-
sis and neglect the important influence of image content
and viewing conditions on the actual visibility of artifacts.
Therefore, they cannot correlate well with perceived qual-
ity, and many experiments confirm this low correlation [6]
and [7]. In order to be able to replace subjective rating ex-
periments, the ideal objective quality assessment system
should rate video impairments just like a human being,
however, it is very difficult by our limited knowledge of
the human visual system.

In order to bring the quality-driven design into effect,
this paper models the quality of video, which focuses on
the effects of computation precision to explore the design
spaces from output quality of video applications.

Our paper is structured as follows: the next Section 2
gives motivation and preliminaries of our work. Section
3 models video quality for quality-driven design. Experi-
ments and results are shown in section 4. Finally, section
5 gives conclusion and our future work.
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II. Preliminaries

A. Motivation

Because of high complexity, dynamic and multi-aspect
character of system design problems, quality cannot be
well defined. However, it can and should be modeled.
There are currently no accepted means for measuring or
quantifying the visual quality of digital video for quality-
driven design. To remedy this situation, we model the
video quality of MPEG-2 video system by combining
subjective-objective metric, which focuses on the effects
of computation precision.

For video applications, a huge amount of high quality
digital data encoded in standard formats are produced
and stored. On the other hand, various kinds of output
devices with different characteristics are developed. A
digital video system that works fine for family television
might be inadequate for video teleconferencing with big-
ger display, however, it is “redundant” for mobile phone
with smaller display. To take the advantage of these char-
acteristics, we propose quality-driven design methodology,
which explores flexible decoder systems for video appli-
cations to achieve low power and low cost while supply
enough performance. In order to bring quality-driven de-
sign into effect, we need to model the video quality, which
is precise enough to enable the systematic consideration,
measurement and comparison.

B. Quality-driven Design for Video Applications

When design embedded systems and SoC (System on a
Chip), designers have to consider the trade-off among sys-
tem performance, cost and power consumption [1]. The
data width computed in the system is one of the most im-
portant design parameters related with performance, cost
and power of the system [2]. The width of datapath and
the size of memories strongly depend on the data width.
System designers often spend much time to analyze the
data width required in the computation of the system
[3]. Hardware designers of portable multimedia devices
reduce the datapath width (the length of registers and
the bit width of operation units). Programmers of em-
bedded systems work hard for adjustment of the width of
variables to keep the accuracy of computation. By con-
trolling the datapath width and/or the length of registers,
we can reduce the cost and power consumption drastically.
Furthermore, we can choose the computation precision re-
ally required for each application. In video processing, for
instance, the required quality of video, such as resolution
and levels of color, strongly depend on the characteristics
of output display devices. We can reduce the computation
precision in target application program, if the reduction
does not induce decrease of output quality. It means that
we can design an video system with the minimum hard-
ware and energy consumption by eliminating redundant
computation. We call the design methodology, quality-
driven design for video applications(QDDV).

The main concepts of QDDV can be formulated as fol-
lows:

Given AnApplicationProgram
lookfor ComputationPrecision
subject to MOS(CP ) ≥ Mcst, PSNR(CP ) ≥ Scst

E(CP ) ≤ Ecst, A(CP ) ≤ Acst

Where MOS(CP ), PSNR(CP ), E(CP ) (energy con-
sumption), and A(CP )(area) are functions of the com-
putation precision CP , Mcst, Scst, Ecst and Acst are the
constraints on the subjective mean opinion score(MOS),
objective peak signal-to-noise ratio(PSNR), energy con-
sumption and area respectively. This is a nonlinear opti-
mization problem. Quality of computation in the system
is determined by the trade-off among quality of output,
power consumption and cost of the system.

C. Video Quality Factors

It is necessary to understand what “quality” means to a
viewer in order to bring the quality-driven design into ef-
fect. Viewers’ enjoyment when watching a video depends
on many factors. Video quality plays a prominent role.
Research has shown that video quality depends on view-
ing distance, display size, resolution, brightness, contrast,
sharpness, colorfulness, naturalness and other factors [8]
and [9].

α = 2 arctan(H/2D) (1)
fmax = L/2α[cpd] (2)

It is helpful to relate the definitions of some of qual-
ity factors to video quality modeling and human visual
system. For instance, in the video community it is very
popular to specify viewing distance in terms of display
size, i.e. in multiples of screen height. The recent exper-
iment results show that the preferred viewing distance is
around 6 or 7 screen heights for smaller displays, it ap-
proaches 3 to 4 screen heights with increasing display size
[10]. In the context of vision modeling, the size and res-
olution of the image are more specifications. The size is
measured in degrees of visual angle α, and the resolution
or maximum spatial frequency fmax is measured in cycles
per degree of visual angle (cpd). For a given screen height
H, viewing distance D and number off scan lines L, these
two units are computed in formulation above.

III. Video Quality Modeling

Well-structured models of the required quality are ex-
tremely important. They can serve to conceptualize, de-
note, analyze and communicate the customer and de-
signer’s ideas, and also to guide the design process. We
employ two measures to model video quality. One is a sub-
jective measure that is derived from the subjective data
while the other is an objective measure that is derived
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TABLE I
MOS grading scale

Scale Impairment

5 Imperceptible
4 perceptible, but not annoying
3 slightly annoying
2 annoying
1 very annoying

from computer-based processing of the sampled video im-
ages. The objective measure of video quality is devel-
oped using the set of MPEG-2 test bitstreams described
in this section. The subjective measure of video quality
is calculated by taking the absolute value of the average
MOSs for each test bitstream. By combing the subjective
MOSs and objective PSNRs, we model the video quality
for quality-driven design, which focuses on the effects of
the computation precision.

A. Subjective Measure

The visual or subjective assessment of video quality
has drawn attention of a number of researchers for many
years, principally in relation to evaluation of new trans-
mission or coding schemes, and in the development of
advanced television standards. The standardization com-
mittees of the ISO, and in particular the CCIR, have
published recommendations on the assessment of picture
quality in television.

Subjective experiments are necessary in order to evalu-
ate models of human vision. Similarly, subjective ratings
form the benchmark for visual quality metrics. Formal
subjective testing is described in ITU-R Recommendation
500, which suggests standard viewing conditions, criteria
for observer selection, assessment procedures, and analy-
sis methods.

In our work, we follow closely the CCIR 500 recommen-
dations with respect to subjective scales and experimental
conditions. We make use of the numerical scores asso-
ciated with the impairment descriptors, or categories of
table 1, which show the 5-point (MOS) impairment scale
for the computation of average MOS scores.

Because the subjective perception of noise and the be-
havior of MPEG-2 systems are influenced by scene at-
tributes such as spatial detail, amount and complexity of
motion, brightness, and contrast, test scenes that spanned
a range of these attributes are selected. MPEG-2 video
bitstreams of Table 2 are used as test scenes.

The specific conditions used are as follows:
• 1:The pictures used are four kinds of resolutions and

are viewed at four times the picture height (4H).
• 2:Non-expert viewers participate in the experiments,

and individual ratings are recoded.
• 3:Nine clips of MPEG-2 test bitstreams are used.

In the experiments, the observers are asked to assign
a score A(i,k) to each test bitstream, where A(i,k) is the

TABLE II
MPEG-2 test bitstreams

Bitstream name resolution bit rate
(Abbreviation) (pixels*lines) (Mbit/sec)

flwr015 352*240 1.5
flwr400 704*480 40
mobl015 352*240 1.5
mobl400 704*480 40
susi015 352*240 1.5
susi400 704*480 40
sonyct1 352*224 1.5
sonyct2 704*480 40

tek3 512*512 3.5

score given by the ith observer to test bitstream k. The
scores are averaged to obtain the MOS value for specific
image.

MOS(k) =
1
n

n∑
i=1

A(i, k) (3)

where n denotes the number of observers.
We changed the computation precision of IDCT, a ker-

nel program in MPEG-2 video decoder and got the results
of figure 2, which show the relationship among the inter-
nal variable bit length in IDCT, MOSs and clips for four
kinds of resolutions. Here, each point in the graph rep-
resents the average quality of a MPEG-2 video decoder
system, which was obtained by averaging the subjective
MOSs. Figure 4 shows the relationship among the in-
ternal variable bit length in IDCT, PSNRs and clips for
four kinds of resolutions. In figure 3 and figure 5 over all
scenes(nine bitstreams) were injected into the MPEG-2
video system.

Subjective assessment tests are widely used to evaluate
the picture quality of coded images, but careful subjec-
tive assessments of quality are experimentally difficult and
lengthy, and the results obtained may vary depending on
the test conditions. Further, subjective assessments pro-
vide no constructive methods for performance improve-
ment, and are difficult to use as part of the design process.
However, the most fundamental quality measures for dig-
ital video are the subjective responses of human viewers
to delivered images and subjective tests remain the only
viable reference point for validating objective measures.

B. Objective Measure

Objective measures of picture quality can make the
comparison of coded images, and also have the possibil-
ity of successive adjustments to improve or optimize the
picture quality for a desired quality of service. The ob-
jective assessment of performance both with respect to
bit rate and image quality would also lead to a more sys-
tematic design of video systems. An objective model that
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produces overall quality estimates would have to account
for application-specific effects. The influence on model-
ing accuracy is the changing expectations of people over
time. For these reasons, objective video quality modeling
is valid only if the application and viewer population are
well defined.

PSNR is often used to specify the signal-to-noise ratio
of a video signal. This method has the advantage of re-
moving the signal power, which varies from scene to scene
from the signal-to-noise-ratio (SNR) calculation so that a
given SNR is indicative of some fixed amount of noise
power. We calculate PSNR according to the following
formulation:

PSNR = 10× log10[
1
E

× 2552][dB] (4)

where, PSNR : Ratio of peak signal to noise
E : Mean-square error

It is important that an objective scale mirror the per-
ceived video quality. For instance, simple distortion
scales, such as the signal to noise ratio (PSNR), or even
the weighted mean square error (WMSE) are good distor-
tion indicators for random errors, but not for structured
or correlated errors. There have been many studies of the
construction of objective scales, which represent proper-
ties of the human observer [11]. Compression algorithms
used in digital video systems produce artifacts whose vis-
ibility strongly depends on the actual video content. Sim-
ple error measures such as RMSE or PSNR, albeit pop-
ular, ignore this important fact and are only a mediocre
predictor of perceived quality. Many applications require
more reliable assessment methods.

C. Modeling Video Quality for QDDV

The subjective quality perceived by the users that de-
termines whether an application is adopted. The ultimate
benchmark would be for objective measures to replace
subjective experiments altogether. We model video qual-
ity by conducting simultaneous subjective and objective
tests. This model building process is necessary for deter-
mining the overall accuracy of the objective parameters
and for identifying the portion of the subjective responses
explained by the objective parameters.

The video quality modeling for quality-driven design is
conducted by the following phases:

• Phase 1: Extracting statistics data from subjective
measures MOSs for different computation precisions.

• Phase 2: Extracting statistics ata from objective
measures PSNR for different computation precisions.

• Phase 3: Calculating a composite video quality
model by combining subjective measure and objec-
tive measure considering computation precision.

CmdlQDDV = Comp(MOS, PSNR) (5)

Video 
Source

   MPEG-2
      Video 
     System

Subjective
  Data Set

Objective
  Data Set

Statistical
  Analysis

   Subjective 
Measurements

   Objective 
Measurements

Models
for QDD

Fig. 1. Process of building video quality model for QDDV

• Phase 4: Modeling the video quality for QDDV.

MDLQDDV = Rank(CmdlQDDV ) (6)

Figure 1 illustrates the process that is being used to
model the video quality for QDDV. Consistent with the
need for quality-driven design, the video source material
was selected to be representative of the actual end-user’s
applications. This work used MPEG-2 test bitstreams.
The source material is passed through MPEG-2 video sys-
tems. The resulting impaired destination material is eval-
uated in subjective tests. Objective measures, extracted
from the digitized video signal, are compared to the sub-
jective test responses using statistical analysis techniques.
Only objective measures that accurately predict the sub-
jective responses over a suitable range of test conditions
are considered. Otherwise, the subjective results are used.

Objective model results are compared with subjective
data to determine the model’s performance. To be of
value, perception-based objective quality measures must
be well correlated with subjective viewer responses. Tests
of correlation between objective measures and subjective
responses should been conducted in a number of video ex-
periments. The perception-based features are measured
using the same source and destination video as the sub-
jective tests. Objective quality parameters, derived from
the perception-based features, are than used to predict
the subjective viewer responses.

Statistical analysis techniques such as coefficients of
correlation and analysis of variance (ANOVA) provide the
fundamental tools for determining how much and what
potion of the total subjective variance can be explained
by objective parameters.

There are a number of attributes that characterize a vi-
sual quality metric in terms of its estimation performance
with respect to the subjective ratings. These attributes
are accuracy, monotonicity and consistency. Accuracy is
the ability of a metric to predict subjective ratings with
minimum average error and can be determined by means
of the Pearson linear correlation coefficient; for a set of N
data pairs (xi,yi),it is defined as follows:

rp =
∑

(xi − x)(yi − y)√∑
(xi − x)2

√∑
(yi − y)2

(7)

where x and y are the means of the respective data sets.
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Fig. 3. MOSs of bitstreams for different internal
variable bit length in IDCT

Monotonicity is another important attribute. Ideally,
changes of a metric’s rating between different sequences
should always have the same sign as the changes of the
corresponding subjective ratings. The degree of mono-
tonicity can be qualitified by the Spearman rank-order
correlation coefficient, which is defined as follows:

rS =
∑

(λi − λ)(γi − γ)√∑
(λi − λ)2

√∑
(γi − γ)2

(8)

= 1 − 6(λ − γ)2

N (N2 − 1)
(9)

where λ is the rank of xi and γi is the rank off yi, and
λ and γ are the respective midranks.

IV. Experiments and Results

This section presents experiments and results. Mea-
surements of MPEG-2 video decode system by changing
the computation precisions of IDCT, the kernel program
of MPEG-2 video decoder have been conducted individ-
ually for video quality modeling. This study investigated
the quality effects of computation precision on an MPEG-
2 video decoder system. We use the modeling method pre-
sented in the previous section. The subjective experimen-
tal setup for the measurements based on ITU Rec.500 as
described previously. The input video material included
some test scenes from the original Rec. 601 test. Table 2
gives a description of the nine scenes that are used for the
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Fig. 4. PSNRs of 4 kinds of resolutions for different
internal variable bit length in IDCT
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Fig. 5. PSNRs of bitstreams for different internal
variable bit length in IDCT

experiments. The input test scenes are chosen for their
variety, although they do not necessarily represent the full
range of video of interest.

Mpeg2decode C source program from the MPEG Soft-
ware Simulation Group was used. It is a player for MPEG-
1 and MPEG-2 video bitstreams. Mpeg2decode is an im-
plementation of an ISO/IEC 13818-2 decoder, whose em-
phasis is on correct implementation of the MPEG stan-
dard and comprehensive code structure. The MPEG-2
core consists of several function blocks such as IDCT, a
couple of motion estimation blocks, a motion compensa-
tion block, variable length encoding, decoding blocks and
so on. IDCT is the kernel part of Mpeg2decode for com-
putation, it consists of three functions, which are idct()
of two dimension IDCT with 11 lines, idctrow() of row
IDCT with 54 lines and idctcol() of column IDCT with
54 lines.

The primary purpose of the subjective experiment is
to collect subjective viewer response data that can be
used to construct an objective model of video quality
for MPEG-2 video systems. There are four experimen-
tal variables that contributed to the variability in the
subjective data:(1)test scene, (2)computation precision,
(3)coding bit-rate, and (4)viewer. In order to examining
the effect of computation precision on perceived quality,
we change the computation precision of IDCT, a very im-
port part in MPEG-2 video decoder system. Three kinds
of bit-rate are used. Viewers are given the task of rating
the difference in quality between the input and output
video. The subjective measure of video quality is calcu-
lated by taking the absolute value of the averaged MOSs
for each test scene.
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Fig. 7. MOSs and PSNRs of bitstreams for internal
variable at 12bit length in IDCT

The objective measure of video quality, which is de-
veloped using a set of ANSI standardized test scenes is
evaluated using MPEG-2 test scenes described in Table
2. We changed the computation precision of IDCT, com-
puted PSNR value for the nine test scenes and got the fig-
ure 5. Figure 6 presents the comparison results of MOSs
and PSNRs for different bitstreams at 12bit precision of
IDCT. Figure 7 presents the comparison results for 8bit
computation precision of IDCT. Here, higher MOSs and
higher PSNRs indicate less impairment.

These experimental results indicate that the subjec-
tive and the objective measurement errors are random
with respect to scene content, and thus we can realize
an improvement in measurement accuracy by averaging
the subjective scores (MOSs) across viewers and scenes,
and by averaging the objective scores (PSNRs) across
scenes. From Figure 6 and Figure 7, the representative ex-
perimental results for our computation-precision-oriented
video quality models of MPEG-2 video decoder system,
we can see that the computation precision of 12bit for
IDCT may be enough since we can not see any damage
in pictures like Figure 9 compared with Figure 8 shown
the two frames from original bitstream, and Figure 10
shows the two frames for internal variable at 8bit length
in IDCT.

V. Conclusions and Future Work

This paper has modeled the video quality for quality-
driven design through combining subjective model, MOS
and objective model, PSNR. We studied the effects of
computation precision on video quality by changing com-
putation precision. Experimental results show that reduc-
ing computation precision while providing certain video
quality to design embedded system is possible, and we be-
lieve that this research is perspective because it can reduce
a lot redundancies, which results in drastically reduction
of cost including energy consumption and areas of hard-
ware. The theory model for quality design CmdlQDDV is
our future work. We also plan to study analysis algorithm
of computation precision and build quality-driven design
methodology in the future.
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Fig. 8. Two frames from the original bitstream

Fig. 9. Two frames for internal variable at 12 bit length in IDCT

Fig. 10. Two frames for internal variable at 8bit length in IDCT
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