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Abstract

Single–character recognition of mathematical symbols poses challenges from its two-

dimensional pattern, the variety of similar symbols that must be recognized dis-

tinctly, the imbalance and paucity of training data available, and the impossibility

of final verification through spell check. We investigate the use of support vector

machines to improve the classification of InftyReader, a free system for the OCR of

mathematical documents. First, we compare the performance of SVM kernels and

feature definitions on pairs of letters that InftyReader usually confuses. Second, we

describe a successful approach to multi–class classification with SVM, utilizing the

ranking of alternatives within InftyReader’s confusion clusters. The inclusion of our

technique in InftyReader reduces its misrecognition rate by 41%.
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1 Introduction

Mathematics is the universal language of scientific literature, but a computer

may find it easier to read the human language in which surrounding text is

written. The failure of conventional OCR systems to treat mathematics has

several consequences:

• Readers of mathematical documents cannot automatically search for earlier

occurences of a variable or operator, in tracing the notation and definitions

used by a journal article.

• The appearance of mathematics on the same line as text often confounds

OCR treatment of surrounding words.

• Equations can only be represented as graphics by semantic transformation

systems, such as those converting digital documents into braille for accessi-

bility by blind readers [13].

Mathematical OCR was investigated as early as 1968 [1]; a survey of its diffi-

culties and previous approaches may be found in [2]. It differs markedly from

typical text recognition because its single-character recognition phase must

be followed by a structural analysis phase, in which symbol relationships such

as superscripts, subscripts, fractions, and matrices must be recovered. The

two-dimensional arrangement affects not only structural analysis but single-

character recognition itself, because typical assumptions about bounding boxes

and baselines are violated. Even in relatively simple equations such as

φ|C(z) = exp(zNφ)
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the subscript-positioned capital blackboard bold C, whose base is nearly aligned

with that of the vertical bar, might be mistaken for a lower-case letter.

Single-character OCR of mathematics also poses challenges that, if not unique,

place it alongside the most difficult human languages to recognize. The recog-

nition problem consists of about 1,000 classes, many with little existing ground

truth data. Certain distinct letters, such as Latin v and Greek ν, are in close

resemblance. Most unusually, we desire the distinction of styles.

In typical mathematical usage, different styles of the same letters will have

completely different meanings. The problem is most severe not in engineer-

ing, but in pure mathematics. For example, within a single article in p-adic

representation theory, the bold letter G often will represent a group over an

algebraically closed field, the plain italic G will represent its rational points

over a p-adic field k, and sans-serif G a reductive quotient over the residual

field k, with German g used for a Lie algebra. Calligraphic A may represent a

simplicial complex, and italic A a torus. (See, e.g., [6].) An optical character

recognizer that does not keep these letters distinct would be practically use-

less in this branch of algebra. However, within a single style, fonts (Computer

Modern, Times, Helvetica, etc.) should not be distinguished, so that mathe-

matical formulas can be compared between articles, regardless of the fonts the

publisher has chosen.

In this paper, we present an experiment using support vector machines (SVM)

to enhance single-character recognition of printed mathematics. OCR prob-

lems were considered very early in the development of SVM, with promising

results. An experiment by Cortes and Vapnik [5] achieved 95.8% accuracy

on handwritten digits in the US Postal Service database. More particularly,
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in character recognition of human languages with hundreds of distinct char-

acters, SVM have achieved promising results, for example, in handwritten

Chinese (99.0%, [7]) and printed Ethiopian (91.5%, [11]). To our knowledge,

the use of SVM in OCR of mathematics has not been investigated before.

This paper describes an experiment using SVM to improve multi-class classi-

fication by an existing OCR system. This OCR system is a purified version

of the InftyReader, a freely available OCR engine for mathematics, described

in [14]. First, we study the ability of various kinds of SVM, as binary classi-

fiers, to distinguish pairs of letters that confuse InftyReader. Then, we show

how the classifiers may be integrated with the system to improve its multi-

class classification ability. Our results indicate that SVM is very suitable for

mathematics symbol recognition.

2 Ground truth data

The InftyProject defined a set of 941 mathematical characters to be distin-

guished [15], and released several databases of ground truth, containing both

single-character and structural recognition results. Because some mathemati-

cal symbols occur very rarely, it was necessary to choose between extracting

each symbol from documents in their entirety, or seeking out samples of partic-

ularly rare characters to provide more uniform representation. Infty-CDB-3-B

represents twenty articles from advanced mathematics journals at full length;

it consists of a tenth of the samples of Infty-CDB-1, chosen by clustering

techniques. The data of Infty-CDB-1 [15] is described in [16]. Infty-CDB-3-A

[12] aims to represent rare characters by more samples; it includes not only

journal articles, but font samples, and multiple scans of letters at different
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Fig. 1. Histogram of number of training samples, by class.

Infty-CDB-3-A (188,752 characters, representing 384 symbol entities from 326

documents) for training, and Infty-CDB-3-B (70,637 characters, representing

275 symbol entities from 20 documents) for testing. No database includes

samples of all 941 symbol entities defined by the Infty Project [16].

A sample of ground truth data for a symbol entity consists of a black and

white bitmap image of that symbol in isolation, extracted from a scanned

physical document. Bold letters are identified with their non-bold counter-

parts, because they are distinguished after single-character recognition, with

the help of contextual information. German letters, which number too few,

and touching and broken characters, are also excluded from our training and

testing data.

In Table 1, we present representatives of the 384 symbol entities appearing in

Infty-CDB-3-A. Figure 1 shows the number of training samples available for

each of these classes.
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3 Confusion Matrix

The engine of InftyReader typically makes use of contextual information; for

this experiment, we distill it to ignore information about a character’s size

or surrounding characters. By running the purified InftyReader engine on the

training data, we produce an integer-valued confusion matrix, with rows that

count ground truth and columns that count recognition results. Every nonzero

off-diagonal entry of this matrix represents a confusing pair, for which an SVM

should be trained. There are 771 confusing pairs, counted as unordered pairs.

In the confusion matrix, each row represents Infty’s recognition result and each

column represents ground truth. The set of nonzero entries from each row of

the confusion matrix represents a confusion cluster. The sizes of these clusters

are indicated in Figure 2. As the figure shows, the confusion matrix is relatively

sparse, and performing multi-class classification only on confusing alternatives,

instead of all 384 symbols, significantly reduces complexity. Each cluster can

be partially ordered by the likelihoods of each alternative, as indicated by the

values of the corresponding matrix entries. This ordering will be utilized in

our multi-class classification strategy later.

4 Pairwise classification with SVM

4.1 Features for SVM training

Some of our SVM are trained with directional mesh feature vectors, intro-

duced by Kimura et al [10] for Japanese handwriting recognition. For a sin-
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Fig. 2. Sizes of confusion clusters.

gle mesh, these feature vectors are constructed from directional histograms

that measure the amount of contour pointing along four principal axes, in

each position of the mesh. A single pixel contributes to the mesh position

in which it lies, and possibly to several neighboring positions, as determined

by mask functions over the bitmap. These mask functions sum to one every-

where in the bitmap. Experience in constructing the recognition engine for the

InftyReader suggested that constantly square meshes capture insignificant in-

formation when a character is especially tall or short. Thus, our mesh data is

divided into “tall,” “square,” and “short” blocks, representing the directional

features from 3 × 5, 5 × 5, and 5 × 3 meshes, respectively. The set of blocks

to be computed depends on the aspect ratio; one or two of the blocks will

always be filled with zeros. The three blocks, together with the arctangent of

the bounding box’s aspect ratio, constitute our “direction” feature vectors,

with dimension effectively (i.e., excluding zero blocks) between 61 and 161.

In [17], Vapnik states the philosophy that, in contrast to classical approaches

that work best with “strong features,” “it is not important what kind of ‘weak

feature’ one uses; it is more important to for ‘smart’ linear combinations.” As

an extreme example of this philosophy, Cortes and Vapnik’s original SVM
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an extreme example of this philosophy, Cortes and Vapnik’s original SVM

study of the USPS handwritten digit database [5] utilizes (smoothed, cen-

tered, de-slanted) bitmap images as feature vectors. Bitmaps as feature vec-

tors, sometimes transformed by principal component analysis, linear discrim-

inant analysis, and nonlinear normalization, also have been the basis of more

modern OCR experiments with SVM ([7], [4], and [11]).

To investigate whether the style-but-not-font distinction aspect of our recog-

nition problem makes bitmap-based approaches less effective, or rather if di-

rectional features discard too much potentially useful information, we train

another set of SVM with bitmap-like feature data. Because characters appear

in bounding boxes of different aspect ratios, we cannot use raw bitmaps di-

rectly. Rather, we impose a 20 by 20 grid onto each bitmap, and measure the

blackness in each grid position. Taking these measurements together with the

arctangent of the aspect ratio, we obtain 401–dimensional “density” feature

vectors.

4.2 Benchmark: A naive classifier

Ideally, we would compare performance of the SVM against the pure Infty

recognizer itself. However, the pure Infty recognizer does not solve a binary

classification problem like the SVM classifiers do. We can only say that the

rate at which it picks a class A over a class B in binary selection should be

greater than the rate at which it selects A out of all possible classes, and vice

versa. These two bounds typically yield an interval too wide to be informative,

so we implement a naive binary classifier as a more precise benchmark.
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The naive classifier is constructed by recording the centroids of the sets of

feature vectors representing instances of each symbol in the training data. We

use the directional feature vectors for this construction. The naive classifier

can perform either multi-class or binary classification; in any case, it assigns

a test sample to the class with the closest centroid.

4.3 SVM training and performance

Altogether, we consider five forms of SVM constructions. On the directional

features, we construct SVM with linear, Gaussian, and cubic polynomial ker-

nels. On the density features, we construct SVM with linear and cubic poly-

nomial kernels. These kernels have the forms:

Klinear(~x, ~y) = ~x · ~y (1)

KGaussian(~x, ~y) = e−γ‖~x−~y‖2

(2)

Kcubic(~x, ~y) = (γ~u · ~v + 1)3. (3)

Support vector machines are trained to perform binary classification by solving

the following optimization problem. Given training data with feature vectors

~xi assigned to class yi ∈ {−1, 1} for i = 1, . . . , l, the support vector machines

solve

min
~w,b,~ξ

1

2
K(~w, ~w) + C

l∑
i=1

ξi (4)

subject to yi(K(~w, ~xi) + b) ≥ 1− ξi

ξi ≥ 0

where ~ξ is an l–dimensional vector, and ~w is a vector in the same feature

space as the ~xi (see, e.g., [8]). We use the LibSVM software [3] to train SVM

classifiers.
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The performance of a binary SVM classifier is evaluated according to a mea-

sure which we call the min-accuracy. This value is the smaller of its recognition

rates for either class.

Before training an SVM, the soft margin C and any parameters appearing in

the kernel K must be chosen in advance (here, γ). For the linear and Gaussian

kernel experiments using directional features, we choose these parameters by

five-fold cross validation. Each training document is assigned, in its entirety,

at random to one of five sets. For each binary classification problem, the

cross-validation accuracy for a choice of parameter values is computed by the

leave-one-out method. Parameter choices are inspected within a grid in loga-

rithmic space, and the grid is expanded until the accuracy stabilizes or begins

decreasing at all its edges. The parameter choice producing the highest cross-

validation accuracy is used once more to train the final SVM for the problem

on the entire training set. This procedure cannot be performed on a binary

classification problem if all the training data for either class is concentrated

in a single one of the five sets; for the 17 (of 771) pairs where we have so little

data, we do not construct a binary SVM.

In fact, the parameter choice was rarely important for the linear SVM; up to

the hardest soft margin considered, accuracies typically remained the same,

as one would expect if the data were linearly separable. A softer hard margin

produces a 3% or greater improvement in min-accuracy on four pairs, and

the constant choice C = .01 produces the best accuracies on training data

overall. For the Gaussian kernel, as well, there is a parameter setting that

yields cross-validation accuracies on each problem that are nearly as high as

if the assignment is allowed to vary with the problem.

10



Fig. 3. Pairs on which the min-accuracy of linear SVM with directional features is

at least 50% higher than that of the naive classifier.

To avoid the time expense of parameter selection, we use only a constant

parameter selection to train the classifiers marked in Table 2 with an asterisk.

These selections are made manually, based upon parameter search results for

some particularly difficult pairs.

The binary classifiers are then evaluated on the testing data set. In Table 2,

we compare their performance against each other and the naive classifier. This

evaluation is only carried out for the 528 confusing pairs for which both classes

have at least ten samples of testing data.

Table 2 shows that any SVM improves remarkably over the naive classifier,

with no one kernel consistently better on directional features. Density features

produce slightly worse results, particularly with the cubic polynomial kernel.

The confusing pairs on which SVM achieves the greatest improvement in min-

accuracy over the naive classifier are shown in Figure 3.
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Because it is efficiently chosen, trained, and utilized, and as effective as the

other classifiers, we will use the linear SVM on directional features as the

basis for the analyses and multi-class experiments in the following sections.

Remarkably, many distinctions are adequately learned by the linear SVM with-

out much training data. Figure 4 plots the min-accuracy for each confusing

pair against the number of samples in the smaller class of the pair.
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Fig. 2. Sizes of confusion clusters.
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5 Multi-class classification

By starting with a fast classifier, we reduce our multi-class classification prob-

lem from 941 classes to the size of the confusion cluster of an Infty recognition

result, which can vary as shown in Figure 2. Popular methods of combining

binary SVM to perform multi-class classification are reviewed in [9], including

a method based on one-versus-all classifiers, and two methods based on one-

versus-one classifiers (the max-wins and directed acyclic graph approaches).

Each approach has well-known drawbacks, and none is suited to utilizing a

priori information about the likelihood of alternatives, though the directed
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acyclic graph method requires an order for the candidates to be chosen, whose

implications are far from obvious.

One of these methods could be applied directly to a confusion cluster, but

instead, we use a method that utilizes the ranking of alternatives in a confusion

cluster, to make it likely that the most likely misrecognitions will be tested

with an SVM.

For an Infty recognition result i, the confusion cluster C(i) of misrecognition

candidates is partially ordered by likelihood, as explained in Section 3. Let

C ′(i) be the subset of alternatives j ∈ C(i) for which a binary SVM comparing

j and i was constructed. After the pure Infty engine recognizes a character as

i, our method starts to apply the SVM for (j, i) for each j ∈ C ′(i), starting

with the most likely j. When any j wins over i in the SVM classification, the

testing is stopped, and j is reported as the classification. If no j wins, i is kept

as the classification.

This method requires us only to train SVM on confusing pairs; other 1-versus-

1 approaches would require us to train SVM on all pairs of letters that appear

together in some confusion cluster. Of course, testing complexity is also linear

in the number of letters in a cluster.

Without SVM, the pure Infty engine recognizes characters at a 96.10% accu-

racy on our testing data set. Using SVM by this method, the accuracy rises

to 97.70%, marking a 41% reduction in misrecognitions.

When Infty makes the correct choice and our method does not, it always

means that an SVM’s decision was at fault. If neither Infty nor our method

chooses correctly, three phenomena can explain the mistake. The SVM testing
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the Infty’s choice against the right alternative may have chosen the wrong re-

sult when it was reached (we count the cases where an SVM was not trained,

because of insufficient data, as such a case). The confusion of Infty’s guess

for the correct answer might not have occurred in the training data, so that

the right alternative was not represented in the confusion cluster; we call this

situation an “unprecedented mistake.” The final alternative is called “shadow-

ing.” On an instance of testing data for which Infty guesses i, and the correct

answer is k, we say that an SVM is “shadowed” if some other alternative j

occurs before k in the confusion cluster, and j defeats i, so that the i versus

k classifier is never run.

Altogether, the classification on the 70,637 testing samples may be synopsized

as follows:

• Infty right, output right: 67,100

• Infty wrong, output right: 1,912

• Infty right, output wrong: 784

• Infty wrong, output wrong, SVM wrong or not trained: 399

• Infty wrong, output wrong, unprecedented mistake: 280

• Infty wrong, output wrong, SVM shadowed: 162

If shadowing happened frequently, our multi-class strategy would be inappro-

priate, but this data shows that it happens quite rarely.

6 Style distinction

One novel aspect of our single-character recognition problem is the distinction

of a letter in Roman, italic, calligraphic, and blackboard bold styles, regardless
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of its font. The efficacy of SVM on this aspect of the problem is compared to

that of other techniques in Table 3. In this table, only the top-ranked candidate

selected by each method is compared to the correct answer.

The decrease in the number of confusing pairs means that the SVM can distin-

guish certain styles with 100% accuracy that pose confusion to other classifiers.

The total number of style mistakes decreases from Infty to SVM by a greater

margin than the misrecognition rate overall.

With occasional mistakes, the naive classifier typically can distinguish calli-

graphic and blackboard bold from other styles. Its main weakness is the dis-

tinction of italic characters. The linear SVM shows significant improvement

in this regard. In Figure 5, we display three italic pairs that are markedly

improved with SVM.

The only case where linear SVM performed remarkably worse than the naive

classifier was in the distinction of lower case italic l from script lower case `.

7 Summary

We have demonstrated the effectiveness of SVM on a large multi-class prob-

lem, with many similar symbols and many classes with little training data.

The SVM managed to learn many binary classifications well for which there

was a paucity of training data. Though all SVM kernels provided about the

same performance on directional features, the linear classifier had superior

performance on density features. Generally, SVM trained on directional fea-

tures performed marginally better than SVM trained on density features. The

SVM excels at distinguishing styles of characters, particularly italic and non-
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Fig. 5. Classification of the same letters in different styles.
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italic variants, which are indistinguishable to simpler methods using the same

sets of features.

We have integrated these SVM into the solution of a large multi-class problem,

by testing only pairs of symbols mistaken by an existing OCR system. The

complexity is low, and alternatives most likely to be confused are preferred by

the algorithm. The single-character misrecognition rate of the OCR system

has fallen by 41% since introducing SVM. We note that we have not omitted

pairs often regarded as indistinguishable without size information (lower and

upper case versions of C, O, P, S, U, V, X, and Z) in reporting our recognition

rate.

Many of the mistakes that remain after the application of SVM represent char-
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acters that are truly indistinguishable without contextual information (such

as the character’s size relative to surrounding characters), or that represent

degraded character images. We will try to improve the use of contextual in-

formation in Infty, and develop better methods for the treatment of touching

and broken characters, in future work.
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[7] Dong, J.-X., Krzyzak, A., and Suen, C. An improved handwritten chinese

17



character recognition system using support vector machine. Pattern Recogn.

Lett. 26, 12 (2005), 1849–1856.

[8] Hsu, C.-W., Chang, C.-C., and Lin, C.-J. A practical guide to support

vector classification. http://www.csie.ntu.edu.tw/%7Ecjlin/papers/

guide/guide.pdf, July 2003.

[9] Hsu, C.-W., and Lin, C.-J. A comparison of methods for multi-class support

vector machines. IEEE Transactions on Neural Networks 13 (2002), 415–425.

[10] Kimura, F., Wakabayashi, T., Tsuruoka, S., and Miyake, Y.

Improvement of handwritten Japanese character recognition using weighted

direction code histogram. Pattern Recognition 30, 8 (1997), 1329–1328.

[11] Meshesha, M., and Jawahar, C. Recognition of printed Amharic

documents. In ICDAR ’05: Proceedings of the Eighth International Conference

on Document Analysis and Recognition (Washington, DC, USA, 2005), IEEE

Computer Society, pp. 784–788.

[12] Suzuki, M. Infty-CDB-3: a ground truthed database of words/formulae images,

third distribution. http://www.inftyproject.org/en/database.html.

[13] Suzuki, M., Kanahori, T., Ohtake, N., and Yamaguchi, K. An

integrated OCR software for mathematical documents and its output with

accessibility. In Computers helping people with special needs, 9th International

Conference ICCHP 2004, Paris (July 2004), Lecture Notes in Computer Science

3119, Springer, pp. 648–655.

[14] Suzuki, M., Tamari, F., Fukuda, R., Uchida, S., and Kanahori, T.

Infty: an integrated OCR system for mathematical documents. In DocEng ’03:

Proceedings of the 2003 ACM symposium on Document engineering (New York,

NY, USA, 2003), ACM Press, pp. 95–104.

18



[15] Suzuki, M., Uchida, S., and Nomura, A. A ground-truthed mathematical

character and symbol image database. In ICDAR ’05: Proceedings of the Eighth

International Conference on Document Analysis and Recognition (ICDAR’05)

(Washington, DC, USA, 2005), IEEE Computer Society, pp. 675–679.

[16] Uchida, S., Nomura, A., and Suzuki, M. Quantitative analysis of

mathematical documents. International Journal on Document Analysis and

Recognition 7, 4 (2005), 211–218.

[17] Vapnik, V. The nature of statistical learning theory. Springer-Verlag New

York, Inc., New York, NY, USA, 1995.

19



Upright

Latin
Upright

Greek

Calligraphic

Blackboard

Bold

Punctuation

Brackets

Accents

Arrows

Binary Oper-

ators

Relational

Operators

Big Symbols

Other Sym-

bols

Italic Latin

Italic Greek

Italic Liga-

ture
Upright Liga-

ture
Table 1

Classes represented in Infty-CDB-3-A.
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Percent of confusing pairs (total 528) attaining given accuracy

Accuracy Naive SVM SVM SVM* SVM* SVM*

Direction Direction Direction Direction Density Density

Linear Gaussian Cubic Linear Cubic

> 0 100.00% 100.00% 100.00% 100.00% 100.00% 96.21%

> .5 96.97% 99.05% 99.05% 99.05% 98.86% 94.51%

> .6 96.21% 98.48% 98.67% 98.48% 98.48% 94.32%

> .7 92.80% 98.30% 98.30% 98.30% 98.11% 92.99%

> .8 88.07% 97.35% 97.54% 97.35% 97.16% 91.10%

> .9 81.06% 95.83% 95.64% 95.64% 94.70% 88.07%

> .95 72.54% 92.99% 93.18% 92.61% 91.10% 83.33%

> .97 64.02% 90.34% 89.77% 89.96% 88.83% 78.22%

> .99 51.33% 84.28% 82.95% 84.28% 82.58% 70.83%

> .995 42.80% 78.22% 74.62% 77.84% 78.03% 66.29%

> .999 34.85% 69.13% 64.39% 69.89% 67.80% 51.14%

Table 2

SVM performance on confusing pairs.
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Naive Infty SVM

Total number of confused pairs 611 321 256

Confused pairs representing style mistakes 48 51 37

Total number of misrecognitions 8,466 2,753 1,625

Style recognition errors 871 219 116

Table 3

Style misrecognitions on testing data
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