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Abstract

In this paper, we propose an estimator of the Lyapunov exponent of the skeleton for
chaotic time series with dynamic noise and prove the consistency of the estimator under
some assumptions.
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1 Introduction.

Methods of analyzing experimental and observational data for evidence of chaos have been ap-

plied to data in physics, geology, astronomy, neurobiology, ecology and economics. Among them

is the Lyapunov exponent which often plays a key role of detecting chaos. Conventional meth-

ods for estimating the Lyapunov exponent are reliable if the data are abundant, if measurement

error is near 0, and if the data really come from a deterministic system. However, with limited

data or a system subject to nonnegligible stochastic perturbations, it is well known that the

estimates may be incorrect or ambiguous. We consider the following non-linear autoregressive
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system with additive noise

Xt = F (Xt−τ , Xt−2τ , . . . , Xt−dτ) + εt,

where F is unknown non-linear function, d and τ are unknown positive integers called embed-

ding dimension and delay time, respectively, and {εt} is a sequence of random noise which is

called dynamic noise.

Several methods have been developed to overcome the difficulty. Kostelich and York (1990)

approximated F by polynomials and separated the signal from noise, and Pikovsky (1986),

Landa and Rosenblum (1989), Cawley and Hsu (1992), and Sauer (1992) filtered out the noise by

using linear filters. McCaffrey et al. (1992) employed non-parametric estimation of F , but they

assumed identical noises. Yao and Tong (1994) explored alternative measures of detecting chaos

in observational data. We take the same approach as Pikovsky (1986), Landa and Rosenblum

(1989), Cawley and Hsu (1992), and Sauer (1992), but use kernel type estimators for filtering

out the noise. Our goal is to estimating the Lyapunov exponent of F by observing {Xt}.

Our method consists of three steps. First, estimate the embedding dimension and delay time.

Second, estimate the skeleton by the Nadaraya-Watson kernel type estimator by using the

estimated embedding dimension and delay time in Step 1. Last, generate the data from the

estimated skeleton and estimate the Lyapunov exponent by using the generated data and partial

derivative of the estimated skeleton. The consistency of the proposed estimator is proved.

The present paper is organized as follows. We propose a method for estimating the Lyapunov

exponent in Section 2. In Section 3, the consistency of the estimator is proved. In Section 4,

the behavior of the procedure is evaluated numerically.
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2 Estimator of the Lyapunov exponent.

2.1 Basic definitions.

We consider {Xt}t=1,2,...,N generated from

Xt = F (Xt−τ0 , Xt−2τ0 , . . . , Xt−d0τ0) + εt, (1)

where d0 and τ0 are unknown positive integers and F : Rd0 → R is unknown non-linear

function such that {Yt} is ergodic where Yt = F (Yt−1, Yt−2, . . . , Yt−d0). We assume that {Xt} is

a discrete-time strictly stationary time series with EX2
t < ∞ and that for any positive integer

t,

E[εt|At−1
1 (X)] = 0, almost surely, (2)

and

E[ε2
t |At−1

1 (X)] = σ2, (σ > 0), almost surely,

where At
s(X) denotes the sigma algebra generated by (Xs, . . . , Xt). It follows that

F (Xt−τ0 , . . . , Xt−d0τ0) = E[Xt|Xt−τ0 , . . . , Xt−d0τ0 ]. The embedding dimension and delay time

are defined as follows.

Definition 2.1. The time series {Xt} is said to have the embedding dimension d0 and the

delay time τ0 if and only if there exist non-negative integers d0 < ∞ and τ0 < ∞ such that

E[Xt|Xt−τ , Xt−2τ , . . . , Xt−dτ ] �= E[Xt|Xt−τ0 , Xt−2τ0 , . . . , Xt−d0τ0 ] a.e. (3)

for any d < d0, and any τ > 0, and

E[Xt|Xt−τ , Xt−2τ , . . . , Xt−dτ ] = E[Xt|Xt−τ0 , Xt−2τ0 , . . . , Xt−d0τ0 ] a.e. (4)

for any (d, τ) ∈ B(d0, τ0), where B(d0, τ0) = {(d, τ)|{τ0, 2τ0, . . . , d0τ0} ⊂ {τ, 2τ, . . . , dτ} }.
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Model (1) may be represented as

X
(d0,τ0)
t = F(X

(d0,τ0)
t−τ0 ) + et, (5)

where
F(x) = t(F (x), x1, . . . , xd0−1) for x = t(x1, x2, . . . , xd0) ∈ Rd0 ,

X
(d0,τ0)
t = t(Xt, Xt−τ0 , . . . , Xt−(d0−1)τ0), and

et = t(εt, 0, . . . , 0).

Then skeleton of model (5) is defined as follows.

Definition 2.2 (skeleton). We refer to the following model as the skeleton of model (5).

Y
(d0,1)
t = F(Y

(d0,1)
t−1 ), (6)

where

Y
(d0,1)
t = t(Yt, Yt−1, . . . , Yt−d0+1).

Since {Y(d0,1)
t } is ergodic from the assumption, the Lyapunov exponent of the skeleton (6)

is defined as follows.

Definition 2.3 (Lyapunov exponent). The Lyapunov exponent λ of the skeleton (6) is de-

fined as

λ = lim
M→∞

1

M
log ‖DF(Y

(d0,1)
M )DF(Y

(d0,1)
M−1 ) · · ·DF(Y

(d0,1)
1 )‖,

where DF(Y
(d0,1)
t ) is the matrix of partial derivatives of the map F : Rd0 → Rd0 evaluated at

Y
(d0,1)
t ,

‖T‖ = sup‖x‖=1 ‖Tx‖ and

‖x‖ =
(∑d0

i=1 x2
i

) 1
2

for T : d0 × d0 matrix and x = t(x1, x2, . . . , xd0) ∈ Rd0.
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2.2 The procedure for estimating the Lyapunov exponent.

Suppose that X1, X2, . . . , XN are observed. Then we propose a procedure for estimating the

Lyapunov exponent of the skeleton from {Xt}t=1,2,...,N . Outline of the procedure is as follows.

(1). Estimate the embedding dimension d0 and delay time τ0 from {Xt}t=1,2,...,N by the pro-

cedure proposed by Yonemoto and Yanagawa (2001). Denote the estimated embedding

dimension and delay time by d̂0 and τ̂0, respectively.

(2). Estimate the skeleton from {Xt}t=1,2,...,N by the Nadaraya - Watson kernel type estimator

using d̂0 and τ̂0, and generating {ŶN,t}t=1,2,...,M from the estimated skeleton by giving an

appropriate initial vector.

(3). Estimate the Lyapunov exponent by using the generated data and partial derivatives of

the estimated skeleton.

The details of each steps are given in the following subsections.

2.3 Estimating the embedding dimension and delay time.

Let {X1, . . . , XN} be a set of observed data. For positive integers d, τ and L ≥ dτ , put

CV (d, τ) =
1

N − L + 1

N∑
t=L

(Xt − F̂\t(d,τ)(Xt−τ , . . . , Xt−dτ ))
2,

where F̂\t(d,τ) denotes the Nadaraya - Watson kernel type estimated regression function (Nadaraya

(1964), Watson(1964)) with the t−th point deleted , that is,

F̂\t(d,τ)(z) =
1

N − L

N∑
s=L,s �=t

XsKd,h(z − (Xs−τ , . . . , Xs−dτ))(f̂\t(d,τ)(z))−1

for z = (z1, z2, . . . , zd), where the summation over s omit t in each case, and

f̂\t(d,τ)(z) =
1

N − L

N∑
s=L,s �=t

Kd,h(z − (Xs−τ , . . . , Xs−dτ )),
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and

Kd,h(z) =
1

hd
d,N

d∏
i=1

K

(
zi

hd,N

)
, (7)

where K : R → R is taken as a density function of a standard normal distribution in this

paper, that is, K is Gaussian kernel. Then Fueda and Yanagawa (2001) proposed a following

procedure for estimating the embedding dimension and delay time and showed the consistency

of their estimator.

(F-Y 1) Give sufficiently large integers D(≥ d0) and T (≥ τ0), and set L = DT . Set hd,N =

hd,N(c) = c × N−1/(2d+1). For each d ∈ {1, 2, . . . , D} and τ ∈ {1, 2, . . . , T}, compute

CV (d, τ).

(F-Y 2) For each τ ∈ {1, 2, . . . , T}, minimize CV (d, τ) with respect to d ∈ {1, 2, . . . , D}, and

denote the minimizer as d̂0(τ).

(F-Y 3) Find d̂0 = minτ d̂0(τ) and τ̂0 = argminτ d̂0(τ).

However the procedure often fails in practice. Yonemoto and Yanagawa (2001) investigated

cause of it and modified the procedure to obtain good estimates from finite data. The modified

procedure is as follows.

1. Give sufficiently large integers D(≥ d0) and T (≥ τ0), and set L = DT . Set hd,N =

hd,N(c) = c × N−1/(2d+1).

2. For each d ∈ {1, 2, . . . , D} and τ ∈ {1, 2, . . . , T} minimize CV (d, τ)|hd,N=hd,N (c) with

respect to c ∈ C by the method illustrated in below and put

ĈV (d, τ) = min
c∈C

CV (d, τ)|hd,N=hd,N (c).
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3. Then select d ∈ {1, 2, . . . , D} and τ ∈ {1, 2, . . . , T} which attain the ’minimum’ value of

{ĈV (d, τ) : d ∈ {1, 2, . . . , D}, τ ∈ {1, 2, . . . , T}} as estimators of the embedding dimen-

sion d̂0 and delay time τ̂0 based on the procedure given below.

The detail of the minimization of CV (d, τ)|hd,N=hd,N (c) with respect to c ∈ C is given as follows.

a. Give a large real number cmax, and for each d ∈ {1, 2, . . . , D} and τ ∈ {1, 2, . . . , T},

compute CV (d, τ)|hd,N=hd,N (c) and CV (d, τ)|hd,N=hd,N (c+0.1) starting from c = 0.1, compare

these values, and if c < cmax and CV (d, τ)|hd,N=hd,N (c) ≥ CV (d, τ)|hd,N=hd,N (c+0.1) then put

c = c + 0.1 and repeat the computation; else if, stop and decide c = c1.

b. In the neighborhood of c1, find c2 = argminCV (d, τ)|hd,N=hd,N (c) in class

C1 = {c1 − 0.09, c1 − 0.08, . . . , c1 + 0.09}.

c. Furthermore, in the neighborhood of c2, compute

ĈV (d, τ) = min
c
{CV (d, τ)hd,N=hd,N (c) : c ∈ C2 = {c2 − 0.009, c2 − 0.008, . . . , c2 + 0.009}}.

The procedure for selecting d̂0 and τ̂0 is as follows.

d. Put CV ∗(τ) = min{ĈV (d, τ) : d ∈ {1, 2, . . . , D}} for each τ ∈ {1, 2, . . . , T}, and find for

given ε > 0,

d̂(τ) = min{d : |ĈV (d, τ) − CV ∗(τ)| < ε}.

e. Next put CV ∗ = min{ĈV (d̂(τ), τ)|τ ∈ {1, 2, . . . , T}}, and then find

d̂0 = min{d̂(τ) : |ĈV (d̂(τ), τ) − CV ∗| < ε}

and

τ̂0 = argmin{d̂(τ) : |ĈV (d̂(τ), τ) − CV ∗| < ε}.
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The smallest τ̂0 is employed when τ̂0 is not unique. The selection of ε is important in the above

procedure. We have no answer for it’s optimal selection. Yonemoto and Yanagawa (2001)

examined the performance of the procedure when ε is CV ∗/10 and CV ∗/20 by simulation and

recommended to use ε = CV ∗/20.

2.4 Estimating the skeleton.

Suppose that X1, X2, . . . , XN are observed. Then we estimate F (x) by

F̂N(x) =

∑N−τ̂0
i=(d̂0−1)τ̂0+1

Kd̂0,h(x − X
(d̂0,τ̂0)
i )Xi+τ̂0∑N−τ̂0

i=(d̂0−1)τ̂0+1
Kd̂0,h(x − X

(d̂0,τ̂0)
i )

.

For x = t(x1, x2, . . . , xd̂0
), put

F̂N (x) = t(F̂N (x), x1 , . . . , xd̂0−1 ).

Giving an appropriate initial vector Ŷ0
N,0, we generate {ŶN,t}t=1,2,...,M by

Ŷ
(d̂0,1)
N,t = F̂N(Ŷ

(d̂0,1)
N,t−1), t = 1, 2, . . . , M, (8)

where

Ŷ
(d̂0,1)
N,t = t(ŶN,t, ŶN,t−1, . . . , ŶN,t−d̂0+1).

Note that Kd̂0,h(x) is defined in Section 2.3 with d = d̂0.

Example 1: Figure 1 (a) shows the plots of (Xt, Xt+1) where {Xt} is generated from Xt =

1− 1.4X2
t−1 + 0.3Xt−2, and Figure 1 (b) shows the plots of (Xt, Xt+1) for {Xt} generated from

Xt = 1 − 1.4X2
t−1 + 0.3Xt−2 + εt with εt ∼ N(0, 0.042).
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Figure 1: Plots of (Xt, Xt+1)

Figure 2 shows the plots of (ŶN,t, ŶN,t+1) when N = 5000. The figure shows that the

procedure reproduced the skeleton fairly well.
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Figure 2: Plots of (Ŷ5000,t, Ŷ5000,t+1)

2.5 Estimating the Lyapunov exponent.

We propose an estimator of the Lyapunov exponent as follows.

λ̂N,M =
1

M
log ‖DF̂N(Ŷ

(d̂0,1)
N,M )DF̂N (Ŷ

(d̂0,1)
N,M−1) · · ·DF̂N(Ŷ

(d̂0,1)
N,1 )‖,

where DF̂N is the matrix of partial derivatives of F̂N .

3 Consistency of the proposed estimator.

In this section, we prove the consistency of the estimator. The consistency of the estimators of

the embedding dimension and delay time is proved in Fueda and Yanagawa (2001). Hence in
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this section we suppose that the embedding dimension and delay time are known.

Theorem 3.1. Under the assumptions that are given in the following subsection, it follows

that for any ε > 0,

lim
M→∞

lim
N→∞

P (|λ̂N,M − λ| > ε) = 0.

3.1 Assumptions.

We assume the following assumptions for Theorem 3.1.

Assumption 3.1. There exists a compact set G ⊂ Rd0 such that

for any x ∈ G,

F(x) + e ∈ G a.s..

where e = t(ε, 0, . . . , 0) ∈ Rd0 and ε is identically distributed as {εt}.

Remark 1. Many observed chaotic data scattered around in compact spaces and satisfy this

assumption. Simulation in Example 1 and Section 4 uses a Gaussian distribution for e, then

the generated data often diverge. If this is the case, we modify the generation of data to satisfy

Assumption 3.1; see the details in Section 4.

Assumption 3.2. F is C1 class on G.

Assumption 3.3. For X
(d0,τ0)
t = t(Xt, Xt−τ0 , . . . , Xt−(d0−1)τ0) ,

we assume X
(d0,τ0)
t ∈ G a.s. for any t ∈ {(d0 − 1)τ0 + 1, (d0 − 1)τ0 + 2, . . . , d0τ0}.

Lemma 3.1. Under Assumption 3.1 and 3.3, it follows that

X
(d0,τ0)
t ∈ G a.s. for any integer t ∈ {(d0 − 1)τ0 + 1, (d0 − 1)τ0 + 2, . . . , N}.

Proof. We prove the lemma by mathematical induction. From Assumption 3.3, X
(d0,τ0)
t ∈ G

a.s. for any t ∈ {(d0−1)τ0 +1, (d0−1)τ0 +2, . . . , d0τ0}. We assume that X
(d0,τ0)
n−τ0 ∈ G a.s.. From
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the assumption and Assumption 3.1, X(d0,τ0)
n = F(X

(d0,τ0)
n−τ0 ) + en ∈ G a.s.. Hence the assertion

follows.

Assumption 3.4. There exists γ > 0 such that

P (X
(d0,τ0)
t ∈ B) ≥ γµ(B)

for any B ∈ BG and t ∈ {(d0−1)τ0 +1, (d0−1)τ0 +2, . . . , N}, where µ is the Lebesgue measure

and BG is the Borel sigma algebra on G.

Assumption 3.5. There exists Γ < ∞ such that

P (X
(d0,τ0)
t ∈ B) ≤ Γµ(B)

for any B ∈ BG and t ∈ {(d0 − 1)τ0 + 1, (d0 − 1)τ0 + 2, . . . , N}.

Assumption 3.6. {Xt} is φ-mixing, that is, for any positive integers k, n and N such that

k ≥ (d0 − 1)τ0 + 1, n ≥ 1, k + n ≤ N − τ0 and N > d0τ0 + 1, there exists φn ↓ 0 such that

|P (A ∩ B) − P (A)P (B)| ≤ φnP (A)

for any A ∈ Fk
(d0−1)τ0+1 and B ∈ FN−τ0

k+n , where F t
s is σ-algebra generated by

(X(d0,τ0)
s , Xs+τ0), (X

(d0,τ0)
s+1 , Xs+1+τ0), . . . , (X

(d0,τ0)
t , Xt+τ0).

Assumption 3.7. For some monotone increasing series {mN ∈ Z} such that

1 ≤ mN ≤ N − d0τ0 − 1 for any integer N > d0τ0 + 1,

hd0,N given in (7) and φn satisfies the following conditions :

there exists A > 0 such that
NφmN

mN
< A for any integerN > d0τ0 + 1,

and furthermore it follows that

Nhd0
d0,N

mN log N
→ ∞ as N → ∞.
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Remark 2. Assumption 3.4 - 3.7 are mathematically involved, but needed for consistency of

the kernel estimator that will be shown numerically work well below.

For N ∈ N such that N ≥ d0τ0 + 1, t ∈ {1, 2, . . . , M} and i ∈ {1, 2, . . . , d0}, let

ZN,t,i = (X1, X2, . . . , XN , ŶN,t, ŶN,t−1, . . . , ŶN,t−i+2, ŶN,t−i, . . . , ŶN,t−d0+1),

f(y|ZN,t,i) be a conditional probability density function of ŶN,t−i+1 given ZN,t,i, and GN,t,i a

probability measure of ZN,t,i. For integers N ≥ d0τ0+1, t ∈ {1, 2, . . . , M} and i ∈ {1, 2, . . . , d0},

put

WN,t,i(x) = (ŶN,t, ŶN,t−1, . . . , ŶN,t−i+2, x, ŶN,t−i, . . . , ŶN,t−d0+1).

Let IG(x) be a defining function of G, that is,

IG(x) =

{
1 if x ∈ G
0 if x /∈ G

.

We use the following lemmas for the proof of Theorem 3.5.

Lemma 3.2. For given ZN,t,i, if

{
x | ∂

∂xi

(F (x) − F̂N(x))|x=WN,t,i(x) · IG(WN,t,i(x)) > 0

}
�= ∅,

then under Assumption 3.2, there exist integer m(+)(ZN,t,i) and finite collection

{g(+)
k (ZN,t,i)}k=1,2,...,m(+)(ZN,t,i) such that each g

(+)
k (ZN,t,i) is a non-empty, connected and relative

open set in {x|IG(WN,t,i(x)) = 1}, and satisfying

{
x | ∂

∂xi
(F (x) − F̂N(x))|x=WN,t,i(x) · IG(WN,t,i(x)) > 0

}
=

m(+)(ZN,t,i)⋃
k=1

g
(+)
k (ZN,t,i),

and g
(+)
j (ZN,t,i) ∩ g

(+)
k (ZN,t,i) = ∅ for j �= k.

Proof. By Assumption 3.2 and the definition of F̂N , ∂
∂xi

(F (x) − F̂N (x)) is continuous on

G. Hence
{

x | ∂
∂xi

(F (x) − F̂N (x))|x=WN,t,i(x) · IG(WN,t,i(x)) > 0
}

is a relative open set in
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{ x |IG(WN,t,i(x)) = 1 }. Since G is a compact set, { x |IG(WN,t,i(x)) = 1 } is a compact set,

too. Let g+
k (ZN,t,i) (k = 1, 2, . . . , m(+)(ZN,t,i)) be non-empty, connected and relative open sets

in {x|IG(WN,t,i(x)) = 1}, and satisfying

{
x | ∂

∂xi
(F (x) − F̂N (x))|x=WN,t,i(x) · IG(WN,t,i(x)) > 0

}
=

m(+)(ZN,t,i)⋃
k=1

g
(+)
k (ZN,t,i),

and g
(+)
j (ZN,t,i)∩g

(+)
k (ZN,t,i) = ∅ for j �= k. If m(+)(ZN,t,i) = ∞, then it contradicts compactness

of { x |IG(WN,t,i(x)) = 1 }. Hence the assertion follows.

Lemma 3.3. For given ZN,t,i, if

{
x | ∂

∂xi
(F (x) − F̂N(x))|x=WN,t,i(x) · IG(WN,t,i(x)) < 0

}
�= ∅,

then under Assumption 3.2, there exist integer m(−)(ZN,t,i) and finite collection

{g(−)
k (ZN,t,i)}k=1,2,...,m(−)(ZN,t,i)

such that each g
(−)
k (ZN,t,i) is a non-empty, connected and relative

open set in {x|IG(WN,t,i(x)) = 1}, and satisfying

{
x | ∂

∂xi
(F (x) − F̂N(x))|x=WN,t,i(x) · IG(WN,t,i(x)) < 0

}
=

m(−)(ZN,t,i)⋃
k=1

g
(−)
k (ZN,t,i)

and g
(−)
j (ZN,t,i) ∩ g

(−)
k (ZN,t,i) = ∅ for j �= k.

Proof. Proof is given similary as that of Lemma 3.2.

If the condition of the lemmas is violated, we put m(+)(ZN,t,i) = 0 and m(−)(ZN,t,i) = 0, more

precisely

m(+)(ZN,t,i) = 0 if

{
x | ∂

∂xi
(F (x) − F̂N (x))|x=WN,t,i(x) · IG(WN,t,i(x)) > 0

}
= ∅,

and

m(−)(ZN,t,i) = 0 if

{
x | ∂

∂xi
(F (x) − F̂N (x))|x=WN,t,i(x) · IG(WN,t,i(x)) < 0

}
= ∅.

We assume the following assumption.
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Assumption 3.8. For any t ∈ {1, 2, . . . , M} and i ∈ {1, 2, . . . , d0}, there exists Jt,i < ∞ such

that

for any integer N ≥ d0τ0 + 1,

f(y|ZN,t,i) < Jt,i a.e. GN,t,i except for at most countable number of y ∈ R.

For the notation of Lemma 3.2 and Lemma 3.3, we assume following assumption.

Assumption 3.9. For any t ∈ {1, 2, . . . , M} and i ∈ {1, 2, . . . , d0}, there exist m
(+)
t,i < ∞ and

m
(−)
t,i < ∞ such that

m(+)(ZN,t,i) ≤ m
(+)
t,i a.e. GN,t,i and m(−)(ZN,t,i) ≤ m

(−)
t,i a.e. GN,t,i

for any N ∈ N such that N ≥ d0τ0 + 1.

Remark 3. Assumption 3.8 - 3.9 are used for the consistency of the Lyapunov exponent.

3.2 Theorems.

Theorem 3.2 (Collomb (1984)). Under Assumption 3.1 - 3.7, it follows that for any ε > 0,

P

(
sup
x∈G

|F (x) − F̂N(x)| > ε

)
→ 0 as N → ∞.

Select an initial vector Y
(d0,1)
0 randomly from G with uniform probability, and set Ŷ

(d0,1)
N,0 =

Y
(d0,1)
0 . Then the following theorems hold.

Theorem 3.3. Under Assumption 3.1 - 3.7, it follows that for any t ∈ {1, 2, . . . , M},

Ŷ
(d0,1)
N,t → Y

(d0,1)
t in probability as N → ∞.
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Proof. We prove the theorem by mathematical induction. From Theorem 3.2, for any ε > 0,

P (|Y1 − ŶN,1| > ε) = P (|F (Y
(d0,1)
0 ) − F̂N(Ŷ

(d0,1)
N,0 )| > ε)

= P (|F (Y
(d0,1)
0 ) − F̂N(Y

(d0,1)
0 )| > ε)

≤ P
(
supx∈G |F (x) − F̂N(x)| > ε

)

→ 0 as N → ∞.

Hence P (‖Y(d0,1)
1 − Ŷ

(d0,1)
N,1 ‖ > ε) ≤ P

(∑d0−1
i=0 |Y1−i − ŶN,1−i| > ε

)
→ 0 as N → ∞, that is,

Ŷ
(d0,1)
N,1 → Y

(d0,1)
1 in probability as N → ∞. We assume that Y

(d0,1)
N,n−1 → Y

(d0,1)
n−1 in probability

as N → ∞. From Assumption 3.1 and Y
(d0,1)
0 ∈ G, Y

(d0,1)
n−1 ∈ G◦. Hence P (Ŷ

(d0,1)
N,n−1 /∈ G) →

0 as N → ∞. Since F is continuous on the compact set G, F (Ŷ
(d0,1)
N,n−1) → F (Y

(d0,1)
n−1 ) in

probability as N → ∞. Therefore for any ε > 0,

P (|Yn − ŶN,n| > ε)

= P (|F (Y
(d0,1)
n−1 ) − F̂N (Ŷ

(d0,1)
N,n−1)| > ε)

≤ P (|F (Y
(d0,1)
n−1 ) − F (Ŷ

(d0,1)
N,n−1)| + |F (Ŷ

(d0,1)
N,n−1) − F̂N(Ŷ

(d0,1)
N,n−1)| > ε)

≤ P (|F (Y
(d0,1)
n−1 ) − F (Ŷ

(d0,1)
N,n−1)| > ε

2
) + P (|F (Ŷ

(d0,1)
N,n−1) − F̂N (Ŷ

(d0,1)
N,n−1)| > ε

2
)

≤ P (|F (Y
(d0,1)
n−1 ) − F (Ŷ

(d0,1)
N,n−1)| > ε

2
)

+P (|F (Ŷ
(d0,1)
N,n−1) − F̂N (Ŷ

(d0,1)
N,n−1)| > ε

2
, Ŷ

(d0,1)
N,n−1 ∈ G)

+P (|F (Ŷ
(d0,1)
N,n−1) − F̂N (Ŷ

(d0,1)
N,n−1)| > ε

2
, Ŷ

(d0,1)
N,n−1 /∈ G)
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≤ P (|F (Y
(d0,1)
n−1 ) − F (Ŷ

(d0,1)
N,n−1)| > ε

2
)

+P (|F (Ŷ
(d0,1)
N,n−1) − F̂N(Ŷ

(d0,1)
N,n−1)| > ε

2
, Ŷ

(d0,1)
N,n−1 ∈ G)

+P (Ŷ
(d0,1)
N,n−1 /∈ G)

→ 0 as N → ∞.

Hence P (‖Y(d0,1)
n − Ŷ

(d0,1)
N,n ‖ > ε) ≤ P

(∑d0−1
i=0 |Y2−i − ŶN,2−i| > ε

)
→ 0 as N → ∞.

Hence Y(d0,1)
n → Ŷ

(d0,1)
N,n in probability as N → ∞.

Theorem 3.4. Under Assumption 3.1-3.7, it follows that

E

[
sup
x∈G

|F (x) − F̂N(x)|
]
→ 0 as N → ∞.

Proof. By Lemma 3.1, there exists K1 < ∞ such that |Xt| < K1 a.s. for any t ∈ {1, 2, . . . , N}.

Since the Gaussian kernel is used, it follows that for any integer N ≥ d0τ0 + 1,

sup
x∈G

|F̂N(x)| < K1 a.s..

Since F is continuous on the compact set G by Assumption 3.2, there exists K2 < ∞ such that

sup
x∈G

|F (x)| < K2.

Hence for any integer N ≥ d0τ0 + 1,

E

[
sup
x∈G

|F (x) − F̂N(x)|
]
≤ K1 + K2 < ∞.

From this inequality, for any integer N ≥ d0τ0 + 1 and any ε > 0, there exists c(ε) such that

ε < c(ε) and

E

[
sup
x∈G

∣∣∣F (x) − F̂N(x)
∣∣∣ · I{supx∈G|F (x)−F̂N (x)|>c(ε)}

]
< ε.
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Therefore
E
[
supx∈G

∣∣∣F (x) − F̂N(x)
∣∣∣]

= E
[
supx∈G

∣∣∣F (x) − F̂N (x)
∣∣∣ · I{supx∈G|F (x)−F̂N (x)|>c(ε)}

]

+E
[
supx∈G

∣∣∣F (x) − F̂N (x)
∣∣∣ · I{supx∈G|F (x)−F̂N (x)|≤ε}

]

+E
[
supx∈G

∣∣∣F (x) − F̂N (x)
∣∣∣ · I{ε<supx∈G|F (x)−F̂N (x)|≤c(ε)}

]

≤ ε + ε + c(ε) · P
(
supx∈G

∣∣∣F (x) − F̂N(x)
∣∣∣ > ε

)

→ 2ε as N → ∞.

Consequently E
[
supx∈G

∣∣∣F (x) − F̂N (x)
∣∣∣]→ 0 as N → ∞.

Theorem 3.5. Under Assumption 3.1-3.9, it follows that

λM − λ̂N,M = op(1) as N → ∞,

where

λM =
1

M
log ‖DF(Y

(d0,1)
M )DF(Y

(d0,1)
M−1 ) · · ·DF(Y

(d0,1)
1 )‖.

Proof. ∣∣∣λM − λ̂N,M

∣∣∣
=

∣∣∣ 1
M

log ‖DF(Y
(d0,1)
M )DF(Y

(d0,1)
M−1 ) · · ·DF(Y

(d0,1)
1 )‖

− 1
M

log ‖DF̂N(Ŷ
(d0,1)
N,M )DF̂N (Ŷ

(d0,1)
N,M−1) · · ·DF̂N(Ŷ

(d0,1)
N,1 )‖

∣∣∣
≤ 1

M

(∣∣∣log ‖DF(Y
(d0,1)
M )DF(Y

(d0,1)
M−1 ) · · ·DF(Y

(d0,1)
1 )‖

− log ‖DF(Ŷ
(d0,1)
N,M )DF(Ŷ

(d0,1)
N,M−1) · · ·DF(Ŷ

(d0,1)
N,1 )‖

∣∣∣)

+ 1
M

(∣∣∣log ‖DF(Ŷ
(d0,1)
N,M )DF(Ŷ

(d0,1)
N,M−1) · · ·DF(Ŷ

(d0,1)
N,1 )‖

− log ‖DF̂N(Ŷ
(d0,1)
N,M )DF̂N(Ŷ

(d0,1)
N,M−1) · · ·DF̂N(Ŷ

(d0,1)
N,1 )‖

∣∣∣) .
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First term in the right hand side of the inequality converges to 0 in probability as N → ∞,

because DF is continuous on G by Assumption 3.2 and Ŷ
(d0,1)
N,t converges to Y

(d0,1)
t in probability

as N → ∞ for any t ∈ {1, 2, . . . , M} by Theorem 3.3. We show that the second term converges

to 0 in probability as N → ∞. Note that it is equivalent to show that for any t ∈ {1, 2, . . . , M},

‖DF(Ŷ
(d0,1)
N,t ) − DF̂N(Ŷ

(d0,1)
N,t )‖ → 0

in probability as N → ∞. Since for x = t(x1, x2, . . . , xd0), (1, i) elements of DF(Ŷ
(d0,1)
N,t ) and

DF̂N(Ŷ
(d0,1)
N,t ) are given respectively by

∂F (x)

∂xi

|
x=Ŷ

(d0,1)

N,t

and
∂F̂N (x)

∂xi

|
x=Ŷ

(d0,1)

N,t

,

it may be proved if we show that for any t ∈ {1, 2, . . . , M} and i ∈ {1, 2, . . . , d0},
∣∣∣∣∣∂F (x)

∂xi

|
x=Ŷ

(d0,1)
N,t

− ∂F̂N (x)

∂xi

|
x=Ŷ

(d0,1)
N,t

∣∣∣∣∣→ 0 in probability as N → ∞.

For any t ∈ {1, 2, . . . , M}, i ∈ {1, 2, . . . , d0} and ε > 0,

P
(∣∣∣∣∂F (x)

∂xi
|
x=Ŷ

(d0,1)
N,t

− ∂F̂N (x)
∂xi

|
x=Ŷ

(d0,1)
N,t

∣∣∣∣ > ε
)

= P
(∣∣∣∣∂F (x)

∂xi
|
x=Ŷ

(d0,1)
N,t

− ∂F̂N (x)
∂xi

|
x=Ŷ

(d0,1)
N,t

∣∣∣∣ > ε, Ŷ
(d0,1)
N,t ∈ G

)

+P
(∣∣∣∣∂F (x)

∂xi
|
x=Ŷ

(d0,1)
N,t

− ∂F̂N (x)
∂xi

|
x=Ŷ

(d0,1)
N,t

∣∣∣∣ > ε, Ŷ
(d0,1)
N,t /∈ G

)

≤ P
(∣∣∣∣∂F (x)

∂xi
|
x=Ŷ

(d0,1)

N,t

− ∂F̂N (x)
∂xi

|
x=Ŷ

(d0,1)

N,t

∣∣∣∣ > ε, Ŷ
(d0,1)
N,t ∈ G

)

+P
(
Ŷ

(d0,1)
N,t /∈ G

)
.

By Theorem 3.3 and Assumption 3.3, it follows that

P
(
Ŷ

(d0,1)
N,t /∈ G

)
→ 0 as N → ∞.
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We next consider the first term of the right hand side of the inequality.

By Theorem 3.4, Lemma 3.2, Lemmma 3.3, Assumption 3.8 and Assumption 3.9, for any N ∈ N

such that N ≥ d0τ0 + 1, t ∈ {1, 2, . . . , M} and i ∈ {1, 2, . . . , d0}, we have

E
[∣∣∣∣ ∂

∂xi

(
F (x) − F̂N(x)

)
|
x=Ŷ

(d0,1)
N,t

∣∣∣∣ · I{Ŷ(d0,1)
N,t ∈G}

]

= E
[
E
[∣∣∣∣ ∂

∂xi

(
F (x) − F̂N(x)

)
|
x=Ŷ

(d0,1)
N,t

∣∣∣∣ · I{Ŷ(d0,1)
N,t ∈G}|ZN,t,i

]]

= E
[∫ ∣∣∣ ∂

∂xi

(
F (x) − F̂N (x)

)
|x=WN,t,i(x)

∣∣∣ · IG(WN,t,i(x))f(x|ZN,t,i)dx
]

≤ Jt,i · E
[∫ ∣∣∣ ∂

∂xi

(
F (x) − F̂N(x)

)
|x=WN,t,i(x) · IG(WN,t,i(x))

∣∣∣ dx
]

= Jt,i · E
[∑m(+)(ZN,t,i)

k=1

∫
g
(+)
k

(ZN,t,i)
∂

∂xi

(
F (x) − F̂N (x)

)
|x=WN,t,i(x)dx

−∑m(−)(ZN,t,i)
k=1

∫
g
(−)
k

(ZN,t,i)
∂

∂xi

(
F (x) − F̂N(x)

)
|x=WN,t,i(x)dx

]

= Jt,i · E
[∑m(+)(ZN,t,i)

k=1

(
sup

x∈g
(+)
k

(ZN,t,i)

{
F (WN,t,i(x)) − F̂N(WN,t,i(x))

}

− inf
x∈g

(+)
k

(ZN,t,i)

{
F (WN,t,i(x)) − F̂N(WN,t,i(x))

})

−∑m(−)(ZN,t,i)
k=1

(
inf

x∈g
(−)
k

(ZN,t,i)
{F (WN,t,i(x)) −F̂N (WN,t,i(x))

}

− sup
x∈g

(−)
k

(ZN,t,i)

{
F (WN,t,i(x)) − F̂N(WN,t,i(x))

})]

≤ 2Jt,i · E
[
(m(+)(ZN,t,i) + m(−)(ZN,t,i)) · supx∈G

∣∣∣F (x) − F̂N(x)
∣∣∣]

≤ 2Jt,i · (m(+)
t,i + m

(−)
t,i ) · E

[
supx∈G

∣∣∣F (x) − F̂N (x)
∣∣∣]

→ 0 as N → ∞.

Hence for any t ∈ {1, 2, . . . , M} and i ∈ {1, 2, . . . , d0},

E

[∣∣∣∣∣∂F (x)

∂xi
|
x=Ŷ

(d0,1)
N,t

− ∂F̂N (x)

∂xi
|
x=Ŷ

(d0,1)
N,t

∣∣∣∣∣ · I{Ŷ(d0,1)
N,t

∈G}

]
→ 0 as N → ∞.
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Thus for any t ∈ {1, 2, . . . , M}, i ∈ {1, 2, . . . , d0} and ε > 0, it follows that

P

(∣∣∣∣∣∂F (x)

∂xi
|
x=Ŷ

(d0,1)
N,t

− ∂F̂N (x)

∂xi
|
x=Ŷ

(d0,1)
N,t

∣∣∣∣∣ > ε, Ŷ
(d0,1)
N,t ∈ G

)
→ 0 as N → ∞.

Therefore |λM − λ̂N,M | = op(1) as N → ∞.

Proof. Proof of Theorem 3.1

For any ε > 0,
P (|λ − λ̂N,M | > ε)

≤ P (|λ − λM | + |λM − λ̂N,M | > ε)

≤ P
(
|λ − λM | > ε

2

)
+ P

(
|λM − λ̂N,M | > ε

2

)
.

Hence from the definition of the Lyapunov exponent and Theorem 3.5, for any ε > 0,

lim
M→∞

lim
N→∞

P (|λ − λ̂N,M | > ε) = 0.

4 Numerical evaluation.

In this section, we evaluate numerically the behavior of the proposed procedure using stochastic

Henon map

Xt = 1 − 1.4X2
t−1 + 0.3Xt−2 + εt,

where εt ∼ N(0, σ2).

Because dynamic noise follows normal distribution, data may diverge. To stay in the neighbor-

hood of attractor of the skeleton, we generate data as follows. For each σ ∈ {0.02, 0.04, 0.06, 0.08,

0.1, 0.3}, the data of size N ∈ {1000, 3000, 5000} is generated by giving an initial value

(X2, X1) which is selected randomly from quadrilateral ABCD, where A = (−1.33, 1.4),
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B = (1.32, 0.443), C = (1.245,−0.466), D = (−1.06,−1.666). This quadrilateral is introduced

in Henon (1976) as a region where Xt does not diverge as t → ∞ when σ2 = 0. When σ2 �= 0,

divergence could occur even if the initial values are selected from the quadrilateral. To avoid it

we discarded X3, X4, . . . , Xi if |Xi − Xi−1| > 3 for some i ≤ 12, and generated new X3, X4, . . .

using the same initial values. Also we discarded Xi−9, Xi−8, . . . , Xi if |Xi −Xi−1| > 3 for some

i ≥ 13 and generated new Xi−9, Xi−8, . . . using (Xi−10, Xi−11), but keeping X1, X2, . . . , Xi−10.

N +1000 points are generated by the above procedure, first 1000 points are discarded, and then

remaining points are used as the data of size N . At first, we estimate the embedding dimension

and delay time from {Xt} by the method described in Section 2.3. For all combination of σ

and N , the true values of d0 and τ0 are obtained, that is, d̂0 = 2 and τ̂0 = 1. In estimating the

skeleton for each combination of σ and N , the same value of hd̂0,N is employed as that used for

estimating the embedding dimension and delay time. For the initial vector (Y 0
N,0, Y

0
N,−1), we

used the one that is randomly selected from data {X(2,1)
2 ,X

(2,1)
3 , . . . ,X

(2,1)
N }.

Figure 3 shows plots of (Xt, Xt+1) (t = 1, 2, . . . , 5000), whereas Figure 4 demonstrates plots of

(ŶN,t, ŶN,t+1) (t = 1, 2, . . . , 30000). Figure 4 shows that when N = 3000, σ = 0.06 or σ = 0.3,

the attractors are limit cycle and the corresponding figures in Figure 3 are not reproduced.

Since our method of estimating the Lyapunov exponent is based on the samples from the at-

tractors, it is impossible to estimate the Lyapunov exponent in such cases and we exclude these

cases from further consideration.
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Figure 3: Plots of (Xt, Xt+1).
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Figure 4: Column (a), (b) and (c) show plots of (ŶN,t, ŶN,t+1) with N=1000, 3000 and 5000,
respectively.
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Now the Lyapunov exponents is estimated using the data of size M = 1000 sampled from

each attractor. Table 1 (a), (b) and (c) summarize the results. The tables show that the

estimated Lyapunov exponents are in the range of 0.301 ∼ 0.389, relatively stable, except for

σ = 0.02, 0.1 when N = 1000, indicating that N = 1000 is not enough for estimating the

Lyapunov exponents. When N ≥ 3000 and σ ≤ 0.08, the range of the estimated Lyapunov

exponents is 0.339 ∼ 0.365 when N = 3000, and 0.316 ∼ 0.372 when N = 5000, showing that

the method works well. Note that the Lyapunov exponent of the Henon map without noise

is known as about 0.418. In stochastic Henon map where the additive noise is involved, the

time series often diverge and we must stop or contract the series when it is diverged. This

changes the shape of attractors as is seen in Figure 3; for example, when σ = 0.1 the shape is

flattened around the vertical axis. Thus the Lyapunov exponent of the stochastic Henon map

is reasonably anticipated to be smaller than the deterministic case. Our estimates support this

speculation.

σ λ̂
0.02 0.264
0.04 0.359
0.06 0.389
0.08 0.342
0.1 0.408

(a) N = 1000

σ λ̂
0.02 0.339
0.04 0.351
0.08 0.365
0.1 0.334

(b) N = 3000

σ λ̂
0.02 0.345
0.04 0.372
0.06 0.350
0.08 0.316
0.1 0.301

(c) N = 5000

Table 1: Estimates of the Lyapunov exponent.

Remark 4. The procedure for reproducing the skeleton did not work well when σ = 0.06 and

N = 3000. We consider that the initial vector was not appropriate for the estimated skeleton

when σ = 0.06 and N = 3000. Hence if the procedure for reproducing the skeleton does not work

well, then we recommend to regenerate data from the estimated skeleton by giving an another

initial vector and estimate the Lyapunov exponent from the regenerated data.
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