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INTRODUCTION

Forests are a renewable energy source that can sub-
stitute for fossil fuels and reduce greenhouse gas (GHG) 
emissions.  Accordingly, forests are gaining in significance 
as a valuable and environmentally friendly green resource.  
International policies such as the Montreal Process have 
increased the importance of sustainable forest manage-
ment, which includes practices such as forest resource 
monitoring and carbon stock assessment.  South Korea 
has no current obligation to reduce GHG emissions dur-
ing the commitment period because it was not included 
in Annex 1 of the Kyoto Protocol; however, South Korea 
is likely to be incorporated into Annex 1 after 2012.  
Therefore, the compilation of GHG absorption and emis-
sion statistics is an urgent necessity (Kwon et al., 2005).  
The Korean Forest Service is building a GHG statistics 
system to cope with negotiations related to climate 
change mitigation, but there are limitations to the devel-
opment of GHG–related databases using only statistical 
information and field surveys (Son et al., 2007; Korea 
Forest Service, 2010). 

Field surveys designed to assess forest carbon stocks 
using the estimated volume method are the most accu-
rate, but are also labor–intensive and time–consuming.  
Moreover, it is difficult to conduct such surveys in inac-
cessible terrain, and these methods are not suitable for 
calculating the spatial distribution of forest biomass over 
large areas.  South Korea currently estimates the national 
scale of its forest carbon stocks based on national forest 
resource survey data.  According to Tier 3 of the 
Intergovernmental Panel on Climate Change Good 

Practice Guidance (IPCC GPG), it is necessary to clearly 
state the spatial distribution of forest biomass by utiliz-
ing remote sensing and Geographic Information Systems 
(GIS) in order to reliably estimate spatial GHG emission 
and absorption.  Attaining statistics about GHGs became 
possible after the 16th Conference of the Parties, and it 
is claimed that the monitoring, reporting, and verifica-
tion (MRV) system can be used to validate reductions.  
Therefore, in the development of statistically representa-
tive datasets, the utilization of GIS and remote sensing 
technology is of utmost importance. 

Previous forest biomass estimations based on remote 
sensing estimated the forest stock, leaf area index, and 
age of a stand using regression analysis (Lee et al., 2004; 
Scott et al., 2010).  However, more recent studies have 
utilized field surveys and remote sensing data to estimate 
the forest biomass in unsurveyed areas or to increase the 
accuracy of forest statistics (Tokola et al., 1996; Tokola, 
2000; Lee et al., 2004; Holmgren et al., 2000).  In partic-
ular, studies estimating forest biomass using national for-
est inventory (NFI) data and forest type mapping, and 
studies estimating forest area biomass and developing 
thematic maps using NFI data and the k–Nearest 
Neighbor (k–NN) algorithm, are ongoing(Katila and 
Tomppo, 2001; 2002, Makela and Pekkarinen, 2004; Yim 
et al., 2007; Jeong et al., 2010).  Fuchs et al. (2009) 
used high– and mid–resolution satellite images to create 
carbon maps based on the k–NN algorithm, and then 
employed linear regression analysis to compare and ana-
lyze the resulting maps.  Studies have been conducted 
that employ the k–NN method in conjunction with both 
the basic band value of satellite images and with vegeta-
tion–sensitive ratio images in order to compare the car-
bon stock and storage of forest stands(Franco Lopez et 
al., 2001; Yoo et al., 2011).  The k–NN technique has 
been applied not only to the Nordic region, which is a sim-
ple terrain area, but also to regions of complex terrain 
such as Switzerland and Italy.  Most previous studies have 
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been conducted on a large scale (e.g., national and county 
levels).  Therefore, research across smaller areas and at 
a finer scale is required in order to represent local (e.g., 
basin–level) variation and complexity in forests. 

Consequently, this study utilized both the k–NN 
algorithm and remote sensing technology to estimate a 
regional forest biomass and to compare and analyze the 
accuracy of these estimates. 

 

MATERIALS AND METHODS

Study area
The research forest of Kangwon National University 

is 3,144 ha in size and spans Chuncheon–si and 
Hongcheon–si in Gangwon–do, South Korea (Figure 1).  
The forest is composed of 27% coniferous trees, of which 
89% are Pinus koraiensis and Larix spp., and 73% 
broadleaved trees, of which 98% are Quercus spp.  The 
total volume of the forest is 755,700 m3, 228,600 m3 of 
which is made up of coniferous forest and 527,200 m3 is 
broadleaved.  The average volume of growing stock per 
ha is approximately 241 m3; this is approximately 2.2 
times higher than the national average.  Distribution by 
age class was largely skewed to age class VI, which 
accounted for approximately 43% of the total area.  In 
general, age classes V and higher accounted for 87% of 
the total area.  Notably, 337 ha, or just over 10% of the 
study area, was classified as age class VIII and was com-

posed of Larix spp. and Pinus spp. (e.g., P. koraiensis) 
(Research Forest of Kangwon national university, 1999). 

 
Conventional data

The GIS data used for this study included a forest 
type map, a forest compartment and sub–compartment 
map, a road network map for the research forest, and 
satellite images from Landsat 5 TM (row 115/path 34) 
obtained on 25 May 2009.  Landsat 5 TM is a mid–resolu-
tion satellite that was launched in March of 1984.  The 
satellite has a detection area of 185 km and an image col-
lection cycle of 16 days.  It consists of 7 bands, but this 
study used digital number (DN) values of only 6 bands 
and did not use the sixth band, which has a 120–m scale 
spatial resolution (Table 1).  Sample plot survey field 
notes from Gangwon National University’s research for-
est were used for the field survey data.  The survey plot 
was designed based on the species and ratios of each age 
class.  There were a total of 189 sample plots, and the sur-
vey was conducted between October and November of 
2009.  The species of trees, diameter at breast height, tree 
height, and number of stems >6 cm in size were meas-
ured in 20–m×20–m quadrangle sample plots.  The data 
collected also included positional information (longitude 
and latitude) for the center of the sample plots meas-
ured with global positioning system devices (Table 2).  
ArcView 10.0, ENVI, and R–project were used to esti-
mate the forest biomass. 

1 Stem volume (m3/ha): forest volume per ha (m3) (Korea Forest Service, 2009).
2 Basic wood density (WD) (t/ m3): dry weight to volume ratio
3 Biomass expansion factor (BEF): ratio of the total aboveground biomass to the biomass of merchantable timber 
4 Root ratio: ratio of the total belowground biomass to the biomass of merchantable timber 

Fig. 1.  The research forest of Kangwon national university in Korea.
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Processing
1. Preparation of the GIS Data and Sample Plots

GIS data related to the sample plot locations and for-
est tree surveys were established using sample plot for-
est tree survey field notes.  These data were used to cal-
culate the forest biomass based on the stem volume per 
ha, basic wood density, biomass expansion factor, and 
root ratio (equation 1).  The stem volume per ha was 
calculated for each tree species by applying an alignment 
chart and the stand yield table of the Korean Forest 
Service.  Furthermore, the basic wood density, biomass 
expansion, and root ratio were based on Korean forest 
carbon accounting standards (Korea Forest Service, 
2010) (Table 3). 

Forest Biomass (t)
=stem volume per ha1 × basic wood density (t/m2)2 
× biomass expansion factor3 × (1+root ratio )      (1)

2. Preprocessing of the Satellite Images
Because satellite images undergo spatial distortions 

for various reasons, including the relative movement of 
the Earth and the characteristics of the satellite or sensor, 
geometric correction is necessary(Lillesand et al., 2008).  
Hence, for the Landsat 5 TM images, a geometric correc-
tion was applied to achieve a root mean square error 

(RMSE) of 25 m using a digital map, a forest compartment 
and sub–compartment map, and a forest road network 
map. 

3.  Forest Biomass Estimation using the k–NN 
Algorithm

The k–NN algorithm is a well–known non–paramet-
ric estimation method for classifying data from target 
sample plots (unobserved areas) based on the most ana-
logical data value from researched reference plots by 
utilizing additional information (e.g., satellite images) 
(Tomppo, 1990).  One advantage of applying the k–NN 
method to forestry is that practical estimations may be 
used instead of regression model estimations because 
k–NN refers to sample plot field survey data when esti-
mating target sample plots(Tomppo, 1990; Yim, 2007). 

3.1.  Forest Type Classification and Establishment 
of a Reference Sample Plot 
Scope setting is required to estimate forest data for 

unobserved target sample plots.  Forests are affected by 
various factors, including the climate and topographic or 
stand–specific factors.  To eliminate such effects, studies 
of how to set the scope of a reference sample plot based 
on various factors are ongoing (Tokola and Heikkilä, 
1997; Katila and Tomppo, 2001).  According to Yim et al. 
(2007), setting the reference scope using a classification 

Table 1.   Characteristics of used data

Classification Data Organization

GIS data
Research Forest of Forest type map (2010.02)

Research Forest of Kangwon 
National University

Plot location map (189point)

Field data Field survey (2009.10~11)

Remote sensing data Landsat TM–5(115/34) Date: 2009/05/25

Table 2.   The distribution of field plot by Forest type

Age class
Conifer Forest Broadleaved Forest Pinus koraiensis

n Volume (m3/ha) n Volume (m3/ha) n Volume (m3/ha)

I – – – – – –

II – –   1 104.8 – –

III   1 150.1 – –   2 153.1

IV 40 198.8 – – 47 209.2

V   3 244.4 10 208.9 18 256.0

VI   2 288.1 19 235.7   2 295.8

VII   1 330.6   4 260.3   1 330.5

VIII 24 376.9 – – 14 361.4

Total 71 – 34 – 84 –

Table 3.   Forest biomass Factor

Forest type Basic wood density (t/m3) Biomass expansion factor Root Ratio

Conifer Forest 0.44 1.44 0.27

Broadleaved Forest 0.61 1.36 0.35

Pinus koraiensis 0.41 1.85 0.32



342 J. S. LEE and S. YOSHIDA

method is effective in terms of minimizing the RMSE.  
Therefore, this study used a forest type map of the 
research forest to establish reference sample plots for 
mixed conifer (C), broadleaved (H), and dominantly P. 
koraiensis (PK) forest stands. Yim et al. (2009) stated 
that the establishment of reference sample plots should 
be based on the degree of similarity between the DN val-
ues for each satellite image band of a target sample plot 
(t) and a reference sample plot (r).  Therefore, this study 
employed the Euclidian distance equation to determine 
the degree of similarity, where dt,r is the distance 
between the target sample plot (t) and reference sample 
plot (r); xi,t and xi,r are the DN values for each band of the 
target sample plot and reference sample plot at an image 
band i; and m is the number of satellite bands used 
(equation 2).  This study used bands 1–5 and 7 from the 
Landsat 5 TM images. 

dt,r=   Σm

i=1 (xi,t – xi,r)
2    (2)

Using the distance between the target and reference 
sample plots (i.e., the degree of similarity for the DN 
value in each band between two plots), higher weighted 
values were assigned (equation 3).

Wt,r=      (3)

As a result, an unobserved site estimation ( ŷt) by 
the k–NN method is computed using the experimental 
value (ŷr) and weighted value for each reference sample 
plot (wt,r) (equation 4). 

ŷt=Σk

i=1 wt,r × yr    (4)

Furthermore, this study applied the vegetation index 
and DN values from Landsat 5 TM images to analyze the 
accuracy and to compare the values of the forest biomass 
estimates.  Because satellite images render identical sur-
faces using different light intensities due to atmospheric 
or topographic influences, studies estimating a forest 
stock or biomass using image transformations (e.g., the 
vegetation index) in order to minimize these effects are 
ongoing(Franco–Lopez et al., 2001; Jensen, 2007; Yim et 
al., 2009; Yoo, 2011).  This study used the normalized dif-
ference vegetation index (NDVI) and tassled cap (TC), 
which are the most popular tools for evaluating the vital 
degree of a forest for statistical verification of the bio-
mass based on index alterations between images.  Rouse 
et al. (1974) developed the NDVI, which is used to esti-
mate the vital degree of vegetation or ground cover 
alteration (Lyon et al., 1998; Song et al., 2001).  The TC 
transformation, which was developed by Crist and 
Cicone (1984), acquires the necessary data by amplify-
ing Landsat TM images and transforming them into three 
categories: brightness, greenness, and wetness(Lee et 
al., 2008; Lee et al., 2004).  This study used greenness 
because it greatly simplifies the identification of vegetated 
areas.

3.2.  Horizontal   Reference   Area   (HRA) 
Classification
In the forest resource survey, relationships between 

variables (forest biomass) and DN values of each image 
band diversified as the investigated area and area 
(number) of the referenced sample plots in the field sur-
veys increased(Tokola and Heikkilä, 1997; Tokola, 2000; 
Yim et al., 2009; Jeong et al., 2010).  This study used a 
range of HRAs (4, 7, and 10 km); of these, 10 km covered 
the entire target area.

3.3. Spatial Filtering
Image DN values are affected by the atmosphere, 

image sensor error, or noise generated in data transmis-
sion and reception because the research forest is located 
in rugged mountainous terrain(Tokola and Heikkila, 
1997).  Spatial filtering is required to reduce the influ-
ence of these factors.  Spatial filtering refers to mathe-
matically defined kernels of variation, representing rapid 
increases or decreases in spatially consecutive pixels.  
Normal kernels have odd numbers such as 3 by 3 or 5 by 
5.  The kernels move to the original images and they are 
assigned a central pixel value by computing a weighted 
value for each pixel.  To remove Mixcell effects from the 
satellite images, we conducted statistical verification by 
varying the extent of filtering.  With no filtering, the veri-
fication involved low–pass spatial filtering with three clas-
sifications: 3×3, 5×5, and 7×7.  The central values were 
calculated as the average of neighboring values. 

3.4 Statistical Verification
Cross–validation was employed to verify the estima-

tion furnished by the k–NN method and set the optimum 
reference sample plot numbers (k) (Katila and Tomppo, 
2001; Yim, 2009).  The overall accuracy (OA) was com-
puted with a fifth matrix(Franco–Lopez et al., 2001; Yim 
et al., 2007).  Among cross–validations, the RMSE and a 
bias for estimation capacity evaluation were computed 
using equations 5 and 6.

RMSE=     (5)

bias=     (6)

In these two equations, yi is the forest biomass measure-
ment, ŷi is the forest biomass measurement using the 
k–NN method, and n is the number of reference sample 
plots.  Meanwhile, measurements and estimations of the 
reference sample plots were separated into four classes 
and the overall accuracies were computed and compared 
with the biomass measurement furnished by the k–NN 
methods.

RESULT & DISCUSSION

1.  Optimum HRA and Number Selection by Forest 
Type

1.1 RMSE Evaluation based on HRA Alteration (Pre–

 Σm

r=1

1
dt,r

1
dt,r

 Σn

i=1 (yi – ŷt)
2

n

 Σn

i=1 (ŷi – yi)

n
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Fig. 2. Schematic methodology for estimating forest biomass using k-NN algorithmKorea.

Fig. 3. The RMSE and bias for different HRA and different number of neighbor plots by 
Original image (Left:RMSE, Right:Bias)
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Filtering)
The RMSE of the forest biomass per ha using DN val-

ues were, from lowest to highest, 4 km>7 km>10 km for 
coniferous stands.  For P. koraiensis stands, the values 
achieved were similar to those for mixed coniferous for-
ests, and the RMSE was lowest for an HRA of 4 km; in 
addition, there was no significant difference between the 
RMSE at an HRA of 7 or 10 km.  The average RMSE at 
an HRA of 4 km for mixed conifers and P. koraiensis 
was 57.0 and 60.0 t/ha, respectively (Figure 3a and b).  
Meanwhile, the order was 10 km>7 km>4 km for the 
broadleaved forest, and the average RMSE values were 
31.3, 31.6, and 33.2 t/ha, respectively.  Katila and Tomppo 
(2001) and Yim et al. (2007) stated that the RMSE tends 
to become smaller as the HRA increases (Figure 3c). 

The RMSE for each HRA using the NDVI and TC were 
identical to the DN values.  Conifers and P. koraiensis 
stands had the lowest RMSE at HRA=4 km, whereas 
broadleaved forest stands had the lowest RMSE at 10 km 
HRA.  However, the RMSE for conifers and P. koraiensis 
increased more than the RMSE of the DN values regard-

less of the HRA.  Conversely, the RMSE for broadleaved 
forests tended to decrease.  Katila and Tomppo (2001) 
reported that the HRA of the minimum RMSE resulted 
from variations in forest structure, physiographic condi-
tions, and sample plot plans.  Previous studies chose 
regional levels (e.g., nation, city, or county) for their 
research, while this study was conducted at the basin 
level with a maximum length of 10 km to reduce the hor-
izontal distance effect. 

1.2 Error Evaluation based on HRA (Post–Filtering)
The forest biomass predicted using DN values had 

the lowest RMSE: an average of 54.5 t/ha at an HRA of 
4 km with 7×7 filtering in the case of conifers.  The 
RMSE was improved by 2.5 t/ha after filtering.  Similar to 
coniferous forests, P. koraiensis had the lowest RMSE 
(61.7 t/ha at HRA=4 km).  The RMSE was increased by 
1.7 t/ha using 7×7 filtering.  The RMSE of the biomass 
estimates for broadleaved forests tended to decrease as 
the window size increased; this was also true for conifer-
ous forests.  The RMSE of the biomass was the lowest at 

Fig. 4. The RMSE and bias for different HRA and different number of neighbor plots by 
NDVI (Left:RMSE, Right:Bias)
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HRA=10 km, and was improved by 2.0 t/ha with 7×7 fil-
tering (Figure 3). 

The RMSE of the forest biomass estimated using the 
NDVI was the lowest (61.3 t/ha for HRA=4 km) using 
5×5 filtering for a coniferous forest.  Pinus koraiensis 
had the lowest RMSE at HRA=4 km using 7×7 filtering, 
and broadleaved forests had the lowest RMSE at HRA= 
10 km using 7×7 filtering.  However, none of these dif-
ferences was statistically significant (Figure 4). 

The RMSE of the forest biomass estimated using TC 
had the lowest RMSE at 57.6 and 60.7 t/ha for HRA=4 km 
using 3×3 filtering for coniferous stands and 7×7 filter-
ing for P. koraiensis stands, respectively.  Broadleaved 
forests had the lowest RMSE: 29.6 t/ha for HRA=10 km.  
Using 7×7 filtering improved the error by 1 t/ha. 

These results suggest that the optimum spatial fil-
tering and HRA to use for RMSE minimization in the case 
of DNs were HRA=4 km with 7×7 filtering for coniferous 
forests, HRA=4 km without filtering for P. koraiensis, 
and HRA=10 km with 7×7 filtering for deciduous forest 
stands.  In the case of NDVI, the optimal values were 
HRA=4 km with 5×5 filtering for conifers, HRA=4 km 

without filtering for P. koraiensis, and HRA=4 km with 
7×7 filtering for deciduous forest stands.  In the case of 
TC, the optimum values were HRA=4 km with 5×5 filter-
ing for coniferous forests, HRA=4 km with 7×7 filtering 
for P. koraiensis, and HRA=10 km with 7×7 filtering for 
broadleaved forests (Figure 5).

1.3  Optimum Reference Sample Plot Number Selection 
and Error Evaluation 
The minimum RMSE of the forest biomass based on 

reference plots (k) and DN values decreased rapidly when 
k was equal to 1–3 and HRA=4 km with 7×7 filtering for 
coniferous forests.  Conversely, the RMSE increased when 
k was >11.  Thus, k=11 was selected as the optimum 
reference plot size when RMSE was limited to 51.8 t/ha 
(Figure 3a).  Furthermore, the trends for P. koraiensis 
(HRA=4 km with no filtering) were similar to those for 
conifers.  The optimum reference plot size for conifers 
was k=8 when the RMSE was limited to 57.9 t/ha (Figure 
3b).  On the other hand, the RMSE of broadleaved stands 
(HRA=10 km with 7×7 filtering) decreased rapidly until 
k reached 1–2 and the RMSE gradually increased when 

Fig. 5. The RMSE and bias for different HRA and different number of neighbor plots by 
Tasseled Cap (Left:RMSE, Right:Bias)
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k was >6.  Therefore, k=6 was selected as the optimum 
reference plot size when the RMSE was limited to 28.4 t/
ha (Figure 3c). 

In the case of NDVI estimates, the RMSE for conifer-
ous forests (HRA=4 km and 5×5 filtering) declined 
sharply when k=1–2 and gradually decreased as k 
increased.  The RMSE increased when k=8; thus, it was 
selected as the optimum reference plot when the RMSE 
was 60.1 t/ha (Figure 4a).  Moreover, the RMSE of P. 
koraiensis (4 km without filtering) fluctuated when k 
was 1–4 and the error gradually decreased from k=5.  
The RMSE increased to 65.6 t/ha when k reached 11 
(Figure 4b).  In addition, the RMSE for broadleaved for-
ests (HRA=4 km with 7×7 filtering) tended to increase 
slightly as k rose above 4.  Therefore, k=4 was selected as 
the optimum reference plot size when RMSE was 30.1 t/
ha (Figure 4c). 

Lastly, in the case of TC, the RMSE of coniferous 
stand biomass estimates (HRA=4 km and 5×5 filtering) 
decreased rapidly when k was 1–3 and tended to decrease 
as k increased.  The RMSE increased when k reached 10; 
hence, the optimum reference value was chosen as k=10 
when the RMSE was 55.2 t/ha (Figure 5a).  The RMSE of 
the P. koraiensis biomass estimate (HRA=4 km with 
7×7 filtering) declined rapidly when k was 1–2 and grad-
ually rose when k was >5.  The optimum reference plot 
size was found to be k=5, at which the RMSE was 59.8 t/
ha (Figure 5b).  The RMSE of broadleaved stands 
(HRA= 10 km with 7×7 filtering) declined rapidly when 
k was 1–2 and increased as k exceeded 6.  Therefore, 
the optimum reference plot was k=6 when the RMSE 
was 29.2 t/ha (Figure 5c).  The reference plot k numbers 
in previous studies were distributed broadly based on 
the target area size, but mostly fell within the 5–10 

range.  Similarly, the results of this study were analogous 
with those of previous studies(Katila and Tomppo,2001; 
Franco–Lopez et al., 2001; Holmstrom, 2002; Jeong et 
al., 2010; Fuchs et al., 2009; Makela and Pekkarinen, 
2004).

The variations in RMSE based on reference plot 
increases per forest type tended to decrease regardless 
of filtering.  This finding is similar to those of Katila and 
Tomppo (2001) and Franco–Lopez et al. (2001).  They 
demonstrated that RMSE values were inversely propor-
tional to the number of reference plots.  Yim et al. (2007) 
suggested an RMSE of 78.5–104.7 m3/ha for tree stock 
volumes based on optimum reference plots; this corre-
sponded to a forest biomass of 87.2–116 t/ha.  This study 
achieved relatively low RMSE values (28.4–65.6 t/ha) 
because the number of reference plots was greater than 
for the NFI data.  In other words, the accuracy was 
enhanced through a greater sample size. 

Based on the bias of coniferous forests using the opti-
mum k, the estimations were too large regardless of the 
index transformation.  The bias for DN and TC estimates 
tended to decrease as k increased, whereas the bias of 
the NDVI estimate tended to increase as k increased.  
The bias variation in NDVI had a small change of 3.9–
6.5 t/ha.  For broadleaved stands, the estimations of DN 
and TC were too large, with the exception of the NDVI.  
The bias for broadleaved stands was 2.9 times smaller 
than for conifers.  Also, the bias decreased with increases 
in k in coniferous and deciduous stands when using the 
NDVI.  The bias of DN and TC were increased when k 
was >6.  Broadleaved stands had the smallest changes in 
bias with increases in k compared to mixed conifers and 
P. koraiensis.  The biomass estimates for P. koraiensis 
stands were overestimated using the NDVI and TC, with 

Table 4.   Comparison of estimated forest biomass between field survey and k–NN method

Forest type

Forest Biomass (t/ha) Forest 
Biomass

(t)Mean Minimum Maximum
Standard 
deviation

Field survey
(n=189)

Conifer 214 160 303 67 579,882 

Pinus koraiensis 248 209 362 57 126,728 

Broad–leaved 254 117 292 30 72,760 

Total 236 117 362 60 779,370 

k–NN

DN

Conifer 211 160 303 23 76,331

Pinus koraiensis 254 209 362 22 136,081

Broadleaved 257 117 292 13 589,342

Total 252 117 362 22 801,753

NDVI

Conifer 210 160 303 50 75,852

Pinus koraiensis 250 209 362 35 133,578

Broad–leaved 262 195 292 13 601,309

Total 254 160 362 30 810,740

Tasseled 
Cap

Conifer 214 160 303 35 77,551

Pinus koraiensis 248 209 362 35 132,448

Broad–leaved 262 117 292 17 602,790

Total 255 117 362 28 812,789
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Fig. 6.  The distribution of forestry biomass by image enhancements. 
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a similar bias noted for conifers.

2. Forest Biomass Estimation based on Forest Type
The total study area biomass estimated by the k–NN 

method was 802,000 t for DN, 811,000 t for NDVI, and 
813 t for TC; the average forest biomass per ha was 252, 
254, and 255 t/ha, respectively.  Compared to the estima-
tions developed using reference plots, the average total 
biomass was overestimated by approximately 22–33 t and 
the average forest biomass per ha was overestimated by 
approximately 16–19 t/ha.  This underestimation in coni-
fer biomass is in accordance with that reported by Yim et 
al. (2007); however, broadleaved stands and P. korai-
ensis had conflicting results as they overestimated the 
results when compared with the reference plot estimates 
(Figure 6 and Table 4).  The overall accuracy of the esti-
mation based on k–NN was 0.21–0.26 t/ha, which is com-
parable to the value reported by Lim (2007) (0.23–
0.28 t/ha).  The accuracy was highest for NDVI and DN 
(0.38 t/ha at biomass estimates of 201–250 t/ha section).  
The TC method, however, had the highest accuracy 
(0.32 t/ha for biomass estimates of 251–300 t/ha).  The 
accuracy of the biomass estimate for all index transfor-
mation images (301 t/ha) was 0.03, which is very low.  
This is comparable to the underestimation reported by 
Holmgren et al. (2000) (Table 5).  According to the index 
of transformation comparison, in terms of OA the DN 
method using a basic band value yielded biomass esti-
mates that were 3% lower than those produced using 
the NDVI; however, the RMSE and bias were higher by 
5.9 and 1.74 t/ha, respectively, indicating that the index 
transformed images had no statistically significant 

impact.  This result is similar to that of Yoo et al. (2011).  
Additionally, Franklin (1986) reported that there was no 
correlation between spectrum values and stands with 
closed crowns, which resulted in estimation errors. 

CONCLUSION

This study established a forest biomass and distribu-
tion map for the research forest of Kangwon National 
University using the k–NN algorithm in combination 
with field survey reference plot data and band value data 
from Landsat 5 TM satellite images.  The k–NN method 
determined the number of reference plots based on the 
RMSE and bias to select an optimum k value according 
to the HRA settings and filtering combination.  
Coniferous and P. koraiensis forests had smaller RMSEs 
as the HRA range decreased, whereas broadleaved for-
ests had the opposite tendency.  The RMSE tended to 
decrease as k increased, but the effect of filtering was 
insignificant. 

Furthermore, according to the RMSE and bias analy-
ses, the DN value application of the k–NN method was 
more effective than the ratio image value application with 
index transformation.  Therefore, we present a method-
ology for estimating forest carbon absorption in a relia-
ble spatial unit according to Tier 3 of the IPCC GPG. 

 In addition, the utilization of time series satellite 
image data can be useful in determining the spatial loca-
tion and distribution of forest carbon stocks resulting 
from fragmentation at the regional or national level.  Thus, 
we can use satellite imagery in an MRV system to meas-
ure the statistical relationships among GHGs, as well as 

Table 5.   Accuracy assessment of estimated biomss by k–NN method

Reference data(t/ha)

Estimated data(t/ha)

<=200 201–250 251–300 301<= total Accuracy

<=200 8 9 3 7 227 0.30

DN

201–250 18 23 27 19 87 0.26

251–300 19 23 11 12 65 0.17

301<= – 6 3 1 10 0.10

total 45 61 44 39 189

Accuracy 0.18 0.38 0.25 0.03 0.23

NDVI

<=200 12 11 8 11 42 0.29

201–250 16 23 19 9 67 0.34

251–300 17 21 13 18 69 0.19

301<= – 6 4 1 11 0.09

total 45 61 44 39 189

Accuracy 0.27 0.38 0.30 0.03 0.26

Tasseled
Cap

<=200 9 14 9 10 42 0.21

201–250 18 15 16 16 65 0.23

251–300 18 25 14 12 69 0.20

301<= – 7 5 1 13 0.08

total 45 61 44 39 189

Accuracy 0.20 0.25 0.32 0.03 0.21
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report and verify emission reductions in a variety of for-
est stand types.
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