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Solutions to discrete Painle@ systems arising from two types of orthogonal
polynomials

O0ooooooooo oooo (NAKAZONO Nobutaka)

Abstract. We consider the relation between discrete Pamnigystems and orthogonal polynomials associated
with the Christoffel transformation. We construct a method to obtain the particular solutions to discreteéPainlev
systems by using orthogonal polynomials and their kernel polynomials. In particular, we treat the cases of the
Hermite polynomials and the discregeHermite Il polynomials as examples.

1 Introduction

Some discrete Painlévsystems have been found in the studies of random matrices [1[]1&s3bne such
example, let us consider the partition function of the Gaussian Unitary Ensemblaof arandom matrix:

:/j;/joA('[l7 7tn)2.|jen(ti)dti, n) = ioz'“t‘m’ (1.1)

whereA(ts, - - - ,ty) is Vandermonde’s determinant. Note that throughout this paper we assume

n n-1
iuf(l):l, iELf(l):l, Ay, ,th) =1, (1.2)
for an arbitrary functiorf (i) whenn = 0. Here we choose
n(t) = —out®—gt* (92> 0). (1.3)
Setting
R, ity (1.4)

=)

we obtain the following difference equation[1, 10]:

R+ Ro+Ro = oo = 2L (L5)
o YTap Ry 2 '

Equation (1.5) is referred to as a discrete Paimleequation, denoted by dsPand has the space of initial
condition of typeEél). Such relations between discrete Paigleystems and random matrices are well known.

Now, we introduce aj-version of a partition function, using (1.1) as our reference. We conﬂ'vb@r
(I,n€ Zso, me Z, ac C, ¢, € R.p) given as

)(21-1)/

J;m— / /Atl, t HH‘EZZO':;% )dqti. (1.6)

The definitions of they-definite integral/*, dqt and theg-exponential functiorEy(t) appearing here are given
at the end of this section. As in the case of (1.1), we can obtain a solution to a discrete &aipetion
expressible in terms aﬂkm. Specifically, we have the following:




Lemma 1.1 A g-analogue of the PainléiV equation corresponding to the surface of tyé]é A-Pv) [9]:

(Xn + qN—mall/Z) (Xn + q—N+ma1—1/2)

_ ~q—N+2n—m-1 3/2, 2

(41X — 1) (Xn-1X0 — 1) = V2" aga, 3%, = T . @

has the following solutian

A=Y gt
Xn =1 . (1.8)
G Un’ L»Un7+1
Here

a?=—iga et aaV?=qN, a=¢™"2 a0 (1.9)

Below, we investigate the solutions to gd@hdg-Py from the viewpoint of orthogonal polynomials. First,
however, we define orthogonal polynomials:

Definition 1.1 A polynomial sequenc@(t)),_o which satisfies the following conditions is called an ortho-
gonal polynomial sequence over the fietd, and each term f?t) is called an orthogonal polynomial over the
field 7.

o degPy(t)) =n0O
e There exists a linear functiona” : .7 (t) — .# which holds the orthogonal condition:
ZIPh(1)] = ok (N> K), (1.10)

where &, is Kronecker's symbol. Here,his called the normalization factor and, = Z[t"] (n =
0,1,...) is called the moment sequence.

An orthogonal polynomial sequence whose coefficient of leading tetns isspecially called a monic ortho-
gonal polynomial sequen¢MOPS.

First, we reconsider the solution to g-&ppearing in (1.4). LetPy(t));r_o be MOPS defined as

ZIROAN] = [ PORDE S5 = by (1.11)
The normalization factor is given as
Zih
hn = 20 (1.12)
and then we can rewrite (1.4) as (cf. [1])
h
Ry= ——. (1.13)
hnfl

We next reconsider the solution¢gePy, appearing in (1.8). The Hankel determinant expressiapr'ﬁfis
given by the following lemma:

Lemmal.2 t,Ur'{m, given in(1.6), can be expressed as

HI,m,O HI,m.,l HI,m,n—l
Hmi Hm2 -~ Hpm
Lm _ g(n-1)(2-1)/2 :m, :m i} :m/” . (1.14)
Hl,m7n71 |'|I,m,n Hl7m,2n72

Here, the entries are given as

o0 I.fl J'[_ ma
H|.,m,k=/ t"ﬂ’:o(q K )dqt. (1.15)

—o0 Eq2 (C12t2)



Letting (Py™)2_, be MOPS defined as

@ Mi—o(a't —q™a)
PLm(t)R™(t) — dgt = hi;™ 1.16
/_00 n ( ) k ( ) qu (012'[2) d n 6n,ka ( )
we can regardH, mn);_o @S a moment sequence. Therefore, by using the normalization factor
wl,m
hi™ = gt (1.17)
Yn

the solution tay-Py can be rewritten as

_l—qn+1 hg-,o

Note thatﬂ?’m(t) defined as (1.16) is referred to as the discgekdermite Il polynomial (cf. [7]) ananl’m(t) is
said to the kernel polynomial chr?"m(t) given by the Christoffel transformation. The definitions of the kernel
polynomial and the Christoffel transformation will be given in the next section.

The solution to d-P (1.13), is given by the single orthogonal polynomial, while thati#8y, (1.18), is
expressed by the two different orthogonal polynomials. From this viewpoint, the types of solutionsaod-P
g-Pyv are different. In the past the solutions to discrete Pamigistems expressed in terms of normalization
factors of one type of orthogonal polynomial has been studied[1, 6, 8, 11], but as far as | know, there is no study
about one expressed in terms of normalization factors of two types of orthogonal polynomial. The purpose of
this paper is to construct the method to give the solutions expressed in terms of normalization factors of two
types of orthogonal polynomials. We note here that solutions to the Paiatgyations expressed in terms of
normalization factors of two types of orthogonal polynomial is studied in [2, 3].

This paper is organized as follows. In Section 2, we consider the compatibility conditions of an orthogonal
polynomial and its kernel polynomial. In Section 3, we demonstrate with examples that from the compatibility
condition given in Section 2 we can obtain the solution to the discrete Paigjestems.

Throughout this paper, we assume<(q| < 1 and the expressiorn‘is a constant” meansod/dt = 0,
wheret is the independent variable of the orthogonal polynomial. We use the following conventiops of
analysis[4, T
g-Shifted factorials:

z i (a0 >
a0eo=[11-ad™?), (@q)=—-—-, (an--,asq,=/[1@;qr, AecC). 1.19
(a:q) iu( qd7), (aq) aq ) (a1 Se) JI:L(JQ)/\ ( ) (1.19)
g-Exponential function:
Eq<z)=iqn<n_l)/2 = (~Z0)o, (1.20)
n= (qu)n
g-Definite integral:
[ fodt=@-a) 3 1@+ f(-d)e (1.21)
. Lo
Basic hypergeometric series:
s, S (81,8 A)n ngn(n-1)/2] =S
s¢r (bl, br,q, ) nZ) bl, bn q q) [( l) q :| Zn (122)



2 The compatibility conditions associated with the Christoffel transformation

In this section, we consider the compatibility conditions of an orthogonal polynomial and its kernel polynomial.
Let (P)2_o = (Pa(t)=_o and (Py)2_, = (Pa(t))®_, be MOPSs with linear functionals’ and.Z overC
given as

Z[tPa(t)] = hndnk (n>k), (2.1)
ZBa(t)] = Z[(t — cot*Pu(t)] = P (n>k ceC), (2.2)

respectively. We refer to the transformation frdinto P, as the Christoffel transformation ar® as the
kernel polynomial. On the other hand, we also refer to the transformation Bram B, as the Geronimus
transformation. We have the following relations from the orthogonal conditions:

A~

hn h,
(t CO)Pn Pr1+— h, P, B= Pn+ﬁ Pr 1 (2.3)
n—1

and then we obtain the following three-term recurrence relations from the compatibility conditions of equations
above:

hn  bn hn
thh =P+ (h ; +CO> Pt — h I:)n 1 (2.4)
n n—1 -
A on h P A A P
tPh=PF1+ n+l+ +Co | Pht — Ph-1. (2.5)
hn hn hnfl

We define the constants,, 3, &, and ﬁn as
thy = Pn+1+ anPn‘f‘BnPn—la tFA’n = |5n+1+ é(nl:sn‘f‘[;’nlﬁn—l- (2-6)

From (2.4) and (2.5), we obtain the following:

A~

hn  hn h _h h h
Uh= ot et Co Po= i, Gn= ot ”+cO, Bn= ——. (2.7)
P hoog hn-1 n hn-1
Setting A
hn hn
Xp = =~ , = 2.8
" hn yn hn+1 ( )
we obtain the following equations from (2.7):
- ! (2.9)
N Bl — Ot G '
1
Yn=—= ~ : (2.10)
Bnyn-1— Qn+Co

When we give an orthogonal polynomRy such that bothx, andf3, are rational functions af (or "), we
can regard (2.9) as a discrete Riccati equation. Similarly, when we give an orthogonal polyRort2al0)
can be also regarded as a discrete Riccati equation. Therefore we find that the compatibility conditions of an
orthogonal polynomial and its kernel polynomial can be related to the discrete Raggaation through the
discrete Riccati equation. In the next section, we demonstrate this point with examples in the case where both
an andp, (or, &, andp, ) are rational functions afi and in the case where both and 3, (or, &, andf, ) are
rational functions ofy".



3 Relation between the compatibility conditions and discrete Painldysystems

In this section, we show that from (2.9) and (2.10) we can obtain the solutions to discrete ®aygms.

We demonstrate the construction by taking two examples. The first example is the Hermite polynomials in the
case where both, andp, (or, &, andf, ) are rational functions af. The second one is the discregélermite

Il polynomials in the case where bothy and, (or, &, and, ) are rational functions af".

3.1 Example I: The case wheréR,);,_ are the Hermite polynomials

We definek, as

Hn(cot +cC
Pa(t) = n(;nl) (c1eC, e, (3.1)

whereH,(t) is the Hermite polynomial:
2 dn 2
Hn(t) = (—1)"e"/2 I (e7t/2). (3.2)
The linear functionals are given as

Cpo0

Cpo0 ~
2t = / C e e, 2[f(1)] = / (t—co) F(t)e %2 */2-oncd gl (3.3)
—Cp00 —Cy0
From the three-term recurrence relation:
C1 n
th, = I:)n+l*C*2 Pn+C722Pn71’ (3:4)
we obtain
C1 n
- - 3.5
On &' Bn 2 (3.5)
From (2.9), we obtain the following discrete Riccati equation:
X = °22 (3.6)
T MX_1+Ca(C1+CoCy) '
Let us consider the following difference equation[5, 8, 10]:
an+b)X,+c¢
Xnr1+Xn1= <— (3.7)

1—Xp?
Equation (3.7) is referred to as a discrete Pai@lBwequation, denoted by dyPand has the space of initial
condition of typeDél). d-R, admits a specialization to the discrete Riccati equation:

- 4X,—2an—a—2b+-4

= , 3.8
Xnt1 Ty (3.8)
with
c=_2 (3.9)
Therefore we obtain the following theorem:
Theorem 3.1 d-By; (3.7) admits the following solutian
2(n+1)
=— " —X+1, (n€Zxg). 3.10
CZ(C1+COC2) n ( ZO) ( )
Here
8 b 12 4 + #0 (3.11)
a=——-—, =5, C=————, C C ) .
(C1+CoC2)2 (C1+CoC2)? (C1+CoCp)? LGt



3.2 Example ll: The case Wherdﬁn)ﬁzo are the Hermite polynomials

We next consider the case whétgis the Hermite polynomial:

. Hn(cot +cC
Pa(t) = ”(znl) , (€1eC,cel). (3.12)
2
We assume here theg is not a real number. The linear functionals are given as

Cpo0

21H1)] = / = O orzooy  giry) = / F(t)e @ /2oty (3.13)
—eo t—Cp —Cpo0
From the three-term recurrence relation:
~ ~ C1 - n .
th, = Pn+1—?2 Pn+C722Pn—l, (3.14)
we obtain
A C1 ~ n
an:—c—z, Bn:@. (3.15)
From (2.10), we obtain the following discrete Riccati equation:
e’ 3.16
I 1+ GGt cot) (3.16)
Therefore we obtain the following theorem:
Theorem 3.2 d-B; (3.7) admits the following solutian
= cz(zc:(lr:rct)(:z)ynJrl’ (n€ Z>o). (3.17)
Here
8 12 4
a:m, b:m, c:—m, C1+CoCp # 0. (3.18)

3.3 Example Ill: The case where(R,);_, are the discreteg-Hermite Il polynomials

We defineR, as
- hp (Cat; Q)

Pa(t) o (c1>0), (3.19)
whereh!! (t; q) is the discrete-Hermite Il polynomial:
=t (T L), (3.20)
The linear functionals, the three-term recurrence relation and the discrete Riccati equation are given by
2fw)= [ (_q‘;t(;)qz)w dt, 2= [ m . (3.21)
tPh=Po1+q " (1-g"cr P, Xa= - (3.22)

o q—ZI’H-l(l _ qn)cl—ZXn_l + Co :
Theorem 3.3 g-Pv (1.7) admits the following solutian

1_qn+1
i 3.23
Xn=1 g (3.23)
Here
a0?=—ig Moot at PP =q N, a=o™"*? c#0. (3.24)

We find that the solution tg-P, given in Theorem 3.3 coincides with one given in (1.18).



3.4 Example IV: The case Wherqﬁn)‘r’;o are the discreteg-Hermite Il polynomials

We consider the case whelPgis the discrete-Hermite Il polynomial:

5 . hh(eit;a)

Pa(t) o (c1>0). (3.25)

We assume thai # o for Ya € Z. Then we have the linear functionals, the three-term recurrence relation and
the discrete Riccati equation as

o f(t) ~ o f(t)
f(t)] = f(t)] = ————— 2
2110)= | aitamas i 210= [ o (3.26)
N A A 1
_ —2n+1l/q M\~ —2 - _
tPn - P|"I+:|. + q (1 q )Cl Pl’\fla Yn q72n+1(17 qn)clizynfl + Co . (327)
Theorem 3.4 g-Pv (1.7) admits the following solutian
Xo—i 9" ¢ Y- (3.28)
c1q”
Here
a2 =—ig ™ et agfaV2=q N, ap=0¢™"? c#£0. (3.29)

4 Concluding remarks

In this paper, we constructed the method to give the solutions to discrete Rasgltems expressed in terms
of normalization factors of two types of orthogonal polynomials and also presented some examples.

It seems that the solutions of various discrete Paikgystems can be constructed by using the method
in this paper. One interesting project is to make a list of discrete Pé&irdgstems related with orthogonal
polynomials given in [7] by this method.
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