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Solutions to discrete Painlev́e systems arising from two types of orthogonal
polynomials

九州大学大学院数理学府 中園信孝 (NAKAZONO Nobutaka)

Abstract. We consider the relation between discrete Painlevé systems and orthogonal polynomials associated
with the Christoffel transformation. We construct a method to obtain the particular solutions to discrete Painlevé
systems by using orthogonal polynomials and their kernel polynomials. In particular, we treat the cases of the
Hermite polynomials and the discreteq-Hermite II polynomials as examples.

1 Introduction

Some discrete Painlevé systems have been found in the studies of random matrices [1, 6, 8]．As one such
example, let us consider the partition function of the Gaussian Unitary Ensemble of ann×n random matrix:

Z(2)
n =

∫ ∞

−∞
· · ·
∫ ∞

−∞
∆(t1, · · · , tn)2

n

∏
i=1

eη(ti)dti , η(ti) =
∞

∑
m=0

zmti
m, (1.1)

where∆(t1, · · · , tn) is Vandermonde’s determinant. Note that throughout this paper we assume

n

∏
i=1

f (i) = 1,
n−1

∏
i=0

f (i) = 1, ∆(t1, · · · , tn) = 1, (1.2)

for an arbitrary functionf (i) whenn= 0. Here we choose

η(ti) =−g1ti
2−g2ti

4 (g2 > 0). (1.3)

Setting

Rn =
Z(2)

n+1Z(2)
n−1(

Z(2)
n

)2 , (1.4)

we obtain the following difference equation[1, 10]:

Rn+1+Rn+Rn−1 =
n

4g2

1

Rn
−

g1

2g2
. (1.5)

Equation (1.5) is referred to as a discrete Painlevé I equation, denoted by d-PI , and has the space of initial
condition of typeE(1)

6 . Such relations between discrete Painlevé systems and random matrices are well known.

Now, we introduce aq-version of a partition function, using (1.1) as our reference. We considerψ l ,m
n

(l ,n∈ Z≥0, m∈ Z, a∈ C, c1 ∈ R>0) given as

ψ l ,m
n =

qn(n−1)(2l−1)/2

n!

∫ ∞

−∞
· · ·
∫ ∞

−∞
∆(t1, · · · , tn)2

n

∏
i=1

∏l−1
j=0(q

jti −qma)

Eq2 (c1
2ti2)

dqti . (1.6)

The definitions of theq-definite integral
∫ ∞
−∞ dqt and theq-exponential functionEq(t) appearing here are given

at the end of this section. As in the case of (1.1), we can obtain a solution to a discrete Painlevé equation
expressible in terms ofψ l ,m

n . Specifically, we have the following:
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Lemma 1.1 A q-analogue of the Painlevé IV equation corresponding to the surface of type A(1)
4 (q-PIV ) [9] :

(Xn+1Xn−1)(Xn−1Xn−1) = q−N+2n−m−1a0a1
3/2a2

2(Xn+qN−ma1
1/2)(Xn+q−N+ma1

−1/2)

Xn+q−N+n−ma1
1/2a2

, (1.7)

has the following solution:

Xn = i
(1−qn+1)qn

c1

ψ0,0
n+1ψ1,−m

n

ψ0,0
n ψ1,−m

n+1

. (1.8)

Here
a0

1/2 =−iqa−1c1
−1, a0

1/2a1
1/2 = q−N, a2 = q2N+2, a ̸= 0. (1.9)

Below, we investigate the solutions to d-PI andq-PIV from the viewpoint of orthogonal polynomials. First,
however, we define orthogonal polynomials:

Definition 1.1 A polynomial sequence(Pn(t))∞
n=0 which satisfies the following conditions is called an ortho-

gonal polynomial sequence over the fieldK , and each term Pn(t) is called an orthogonal polynomial over the
fieldK .

• deg(Pn(t)) = n．

• There exists a linear functionalL : K (t)→ K which holds the orthogonal condition:

L [tkPn(t)] = hnδn,k (n≥ k), (1.10)

whereδn,k is Kronecker’s symbol. Here, hn is called the normalization factor andµn = L [tn] (n =
0,1, . . .) is called the moment sequence.

An orthogonal polynomial sequence whose coefficient of leading term is1 is especially called a monic ortho-
gonal polynomial sequence(MOPS).

First, we reconsider the solution to d-PI appearing in (1.4). Let(Pn(t))∞
n=0 be MOPS defined as

L [Pn(t)Pk(t)] =
∫ ∞

−∞
Pn(t)Pk(t)e

−g1t2−g2t4
dt = hnδn,k. (1.11)

The normalization factor is given as

hn =
Z(2)

n+1

Z(2)
n

, (1.12)

and then we can rewrite (1.4) as (cf. [1])

Rn =
hn

hn−1
. (1.13)

We next reconsider the solution toq-PIV appearing in (1.8). The Hankel determinant expression ofψ l ,m
n is

given by the following lemma:

Lemma 1.2 ψ l ,m
n , given in(1.6), can be expressed as

ψ l ,m
n = qn(n−1)(2l−1)/2

∣∣∣∣∣∣∣∣∣
Hl ,m,0 Hl ,m,1 · · · Hl ,m,n−1

Hl ,m,1 Hl ,m,2 · · · Hl ,m,n
...

...
...

...
Hl ,m,n−1 Hl ,m,n · · · Hl ,m,2n−2

∣∣∣∣∣∣∣∣∣ . (1.14)

Here, the entries are given as

Hl ,m,k =
∫ ∞

−∞
tk ∏l−1

j=0(q
jt −qma)

Eq2 (c1
2t2)

dqt. (1.15)
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Letting (Pl ,m
n )∞

n=0 be MOPS defined as

∫ ∞

−∞
Pl ,m

n (t)Pl ,m
k (t)

∏l−1
j=0(q

jt −qma)

Eq2 (c1
2t2)

dqt = hl ,m
n δn,k, (1.16)

we can regard(Hl ,m,n)
∞
n=0 as a moment sequence. Therefore, by using the normalization factor

hl ,m
n = q(1−2l)n ψ l ,m

n+1

ψ l ,m
n

, (1.17)

the solution toq-PIV can be rewritten as

Xn = i
1−qn+1

c1qn

h0,0
n

h1,−m
n

. (1.18)

Note thatP0,m
n (t) defined as (1.16) is referred to as the discreteq-Hermite II polynomial (cf. [7]) andP1,m

n (t) is
said to the kernel polynomial ofP0,m

n (t) given by the Christoffel transformation. The definitions of the kernel
polynomial and the Christoffel transformation will be given in the next section.

The solution to d-PI , (1.13), is given by the single orthogonal polynomial, while that toq-PIV , (1.18), is
expressed by the two different orthogonal polynomials. From this viewpoint, the types of solutions to d-PI and
q-PIV are different. In the past the solutions to discrete Painlevé systems expressed in terms of normalization
factors of one type of orthogonal polynomial has been studied[1, 6, 8, 11], but as far as I know, there is no study
about one expressed in terms of normalization factors of two types of orthogonal polynomial. The purpose of
this paper is to construct the method to give the solutions expressed in terms of normalization factors of two
types of orthogonal polynomials. We note here that solutions to the Painlevé equations expressed in terms of
normalization factors of two types of orthogonal polynomial is studied in [2, 3].

This paper is organized as follows. In Section 2, we consider the compatibility conditions of an orthogonal
polynomial and its kernel polynomial. In Section 3, we demonstrate with examples that from the compatibility
condition given in Section 2 we can obtain the solution to the discrete Painlevé systems.

Throughout this paper, we assume 0< |q| < 1 and the expression “α is a constant” means dα/dt = 0,
wheret is the independent variable of the orthogonal polynomial. We use the following conventions ofq-
analysis[4, 7]．
q-Shifted factorials:

(a;q)∞ =
∞

∏
i=1

(1−aqi−1), (a;q)λ =
(a;q)∞

(aqλ ;q)∞
, (a1, · · · ,as;q)λ =

s

∏
j=1

(a j ;q)λ , (λ ∈ C). (1.19)

q-Exponential function:

Eq(z) =
∞

∑
n=0

qn(n−1)/2

(q;q)n
zn = (−z;q)∞. (1.20)

q-Definite integral: ∫ ∞

−∞
f (t)dqt = (1−q)

∞

∑
n=−∞

( f (qn)+ f (−qn))qn. (1.21)

Basic hypergeometric series:

sϕr

(
a1, · · · ,as

b1, · · · ,br
;q,z

)
=

∞

∑
n=0

(a1, · · · ,as;q)n

(b1, · · · ,br ;q)n(q;q)n

[
(−1)nqn(n−1)/2

]1+r−s
zn. (1.22)
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2 The compatibility conditions associated with the Christoffel transformation

In this section, we consider the compatibility conditions of an orthogonal polynomial and its kernel polynomial.
Let (Pn)

∞
n=0 = (Pn(t))∞

n=0 and(P̂n)
∞
n=0 = (P̂n(t))∞

n=0 be MOPSs with linear functionalsL andL̂ overC
given as

L [tkPn(t)] = hnδn,k (n≥ k), (2.1)

L̂ [tkP̂n(t)] = L [(t −c0)t
kP̂n(t)] = ĥnδn,k (n≥ k, c0 ∈ C), (2.2)

respectively. We refer to the transformation fromPn to P̂n as the Christoffel transformation and̂Pn as the
kernel polynomial. On the other hand, we also refer to the transformation fromP̂n to Pn as the Geronimus
transformation. We have the following relations from the orthogonal conditions:

(t −c0)P̂n = Pn+1+
ĥn

hn
Pn, Pn = P̂n+

hn

ĥn−1
P̂n−1, (2.3)

and then we obtain the following three-term recurrence relations from the compatibility conditions of equations
above:

tPn = Pn+1+

(
ĥn

hn
+

hn

ĥn−1
+c0

)
Pn+

hn

hn−1
Pn−1, (2.4)

tP̂n = P̂n+1+

(
hn+1

ĥn
+

ĥn

hn
+c0

)
P̂n+

ĥn

ĥn−1
P̂n−1. (2.5)

We define the constantsαn, βn, α̂n andβ̂n as

tPn = Pn+1+αnPn+βnPn−1, tP̂n = P̂n+1+ α̂nP̂n+ β̂nP̂n−1. (2.6)

From (2.4) and (2.5), we obtain the following:

αn =
ĥn

hn
+

hn

ĥn−1
+c0, βn =

hn

hn−1
, α̂n =

hn+1

ĥn
+

ĥn

hn
+c0, β̂n =

ĥn

ĥn−1
. (2.7)

Setting

xn =
hn

ĥn
, yn =

ĥn

hn+1
. (2.8)

we obtain the following equations from (2.7):

xn =−
1

βnxn−1−αn+c0
, (2.9)

yn =−
1

β̂nyn−1− α̂n+c0
. (2.10)

When we give an orthogonal polynomialPn such that bothαn andβn are rational functions ofn (or qn), we
can regard (2.9) as a discrete Riccati equation. Similarly, when we give an orthogonal polynomialP̂n, (2.10)
can be also regarded as a discrete Riccati equation. Therefore we find that the compatibility conditions of an
orthogonal polynomial and its kernel polynomial can be related to the discrete Painlevé equation through the
discrete Riccati equation. In the next section, we demonstrate this point with examples in the case where both
αn andβn (or, α̂n andβ̂n ) are rational functions ofn and in the case where bothαn andβn (or, α̂n andβ̂n ) are
rational functions ofqn.
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3 Relation between the compatibility conditions and discrete Painlev́e systems

In this section, we show that from (2.9) and (2.10) we can obtain the solutions to discrete Painlevé systems.
We demonstrate the construction by taking two examples. The first example is the Hermite polynomials in the
case where bothαn andβn (or, α̂n andβ̂n ) are rational functions ofn. The second one is the discreteq-Hermite
II polynomials in the case where bothαn andβn (or, α̂n andβ̂n ) are rational functions ofqn.

3.1 Example I: The case where(Pn)
∞
n=0 are the Hermite polynomials

We definePn as

Pn(t) =
Hn(c2t +c1)

c2
n , (c1 ∈ C, c2 ∈ C∗), (3.1)

whereHn(t) is the Hermite polynomial:

Hn(t) = (−1)net2/2 dn

dtn (e
−t2/2). (3.2)

The linear functionals are given as

L [ f (t)] =
∫ c2∞

−c2∞
f (t)e−c2

2t2/2−c1c2tdt, L̂ [ f (t)] =
∫ c2∞

−c2∞
(t −c0) f (t)e−c2

2t2/2−c1c2tdt. (3.3)

From the three-term recurrence relation:

tPn = Pn+1−
c1

c2
Pn+

n

c2
2 Pn−1, (3.4)

we obtain

αn =−
c1

c2
, βn =

n

c2
2 . (3.5)

From (2.9), we obtain the following discrete Riccati equation:

xn =−
c2

2

nxn−1+c2(c1+c0c2)
. (3.6)

Let us consider the following difference equation[5, 8, 10]:

Xn+1+Xn−1 =
(an+b)Xn+c

1−Xn
2 . (3.7)

Equation (3.7) is referred to as a discrete Painlevé II equation, denoted by d-PII , and has the space of initial
condition of typeD(1)

5 . d-PII admits a specialization to the discrete Riccati equation:

Xn+1 =
4Xn−2an−a−2b+4

4(Xn+1)
, (3.8)

with

c=−
a

2
. (3.9)

Therefore we obtain the following theorem:

Theorem 3.1 d-PII (3.7) admits the following solution:

Xn =
2(n+1)

c2(c1+c0c2)
xn+1, (n∈ Z≥0). (3.10)

Here

a=
8

(c1+c0c2)2 , b=
12

(c1+c0c2)2 , c=−
4

(c1+c0c2)2 , c1+c0c2 ̸= 0. (3.11)
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3.2 Example II: The case where(P̂n)
∞
n=0 are the Hermite polynomials

We next consider the case whereP̂n is the Hermite polynomial:

P̂n(t) =
Hn(c2t +c1)

c2
n , (c1 ∈ C, c2 ∈ C∗). (3.12)

We assume here thatc0 is not a real number. The linear functionals are given as

L [ f (t)] =
∫ c2∞

−c2∞

f (t)

t −c0
e−c2

2t2/2−c1c2tdt, L̂ [ f (t)] =
∫ c2∞

−c2∞
f (t)e−c2

2t2/2−c1c2tdt. (3.13)

From the three-term recurrence relation:

tP̂n = P̂n+1−
c1

c2
P̂n+

n

c2
2 P̂n−1, (3.14)

we obtain

α̂n =−
c1

c2
, β̂n =

n

c2
2 . (3.15)

From (2.10), we obtain the following discrete Riccati equation:

yn =−
c2

2

nyn−1+c2(c1+c0c2)
. (3.16)

Therefore we obtain the following theorem:

Theorem 3.2 d-PII (3.7) admits the following solution:

Xn =
2(n+1)

c2(c1+c0c2)
yn+1, (n∈ Z≥0). (3.17)

Here

a=
8

(c1+c0c2)2 , b=
12

(c1+c0c2)2 , c=−
4

(c1+c0c2)2 , c1+c0c2 ̸= 0. (3.18)

3.3 Example III: The case where(Pn)
∞
n=0 are the discreteq-Hermite II polynomials

We definePn as

Pn(t) =
hII

n (c1t;q)

c1
n , (c1 > 0), (3.19)

wherehII
n (t;q) is the discreteq-Hermite II polynomial:

hII
n (t;q) = tn

2ϕ1

(
q−n,q−n+1

0
;q2,−q2

t2

)
. (3.20)

The linear functionals, the three-term recurrence relation and the discrete Riccati equation are given by

L [ f (t)] =
∫ ∞

−∞

f (t)

(−c1
2t2;q2)∞

dqt, L̂ [ f (t)] =
∫ ∞

−∞

(t −c0) f (t)

(−c1
2t2;q2)∞

dqt, (3.21)

tPn = Pn+1+q−2n+1(1−qn)c1
−2Pn−1, xn =−

1

q−2n+1(1−qn)c1
−2xn−1+c0

. (3.22)

Theorem 3.3 q-PIV (1.7) admits the following solution:

Xn = i
1−qn+1

c1qn xn. (3.23)

Here
a0

1/2 =−iq−m+1c0
−1c1

−1, a0
1/2a1

1/2 = q−N, a2 = q2N+2, c0 ̸= 0. (3.24)

We find that the solution toq-PIV given in Theorem 3.3 coincides with one given in (1.18).
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3.4 Example IV: The case where(P̂n)
∞
n=0 are the discreteq-Hermite II polynomials

We consider the case whereP̂n is the discreteq-Hermite II polynomial:

P̂n(t) =
hII

n (c1t;q)

c1
n , (c1 > 0). (3.25)

We assume thatc0 ̸= qa for ∀a∈ Z. Then we have the linear functionals, the three-term recurrence relation and
the discrete Riccati equation as

L [ f (t)] =
∫ ∞

−∞

f (t)

(t −c0)(−c1
2t2;q2)∞

dqt, L̂ [ f (t)] =
∫ ∞

−∞

f (t)

(−c1
2t2;q2)∞

dqt, (3.26)

tP̂n = P̂n+1+q−2n+1(1−qn)c1
−2P̂n−1, yn =−

1

q−2n+1(1−qn)c1
−2yn−1+c0

. (3.27)

Theorem 3.4 q-PIV (1.7) admits the following solution:

Xn = i
1−qn+1

c1qn yn. (3.28)

Here
a0

1/2 =−iq−m+1c0
−1c1

−1, a0
1/2a1

1/2 = q−N, a2 = q2N+2, c0 ̸= 0. (3.29)

4 Concluding remarks

In this paper, we constructed the method to give the solutions to discrete Painlevé systems expressed in terms
of normalization factors of two types of orthogonal polynomials and also presented some examples.

It seems that the solutions of various discrete Painlevé systems can be constructed by using the method
in this paper. One interesting project is to make a list of discrete Painlevé systems related with orthogonal
polynomials given in [7] by this method.
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[3] D. Dai and L. Zhang, Painlevé VI and Hankel determinants for the generalized Jacobi weight, J. Phys. A43 (2010).

[4] G. Gasper and M. Rahman, Basic Hypergeometric Series (Second edition), Encyclopedia of Mathematics and Its Applications
96 (Cambridge University Press, Cambridge, 2004).

[5] B. Grammaticos, A. Ramani and V. Papageorgiou, Do integrable mappings have the Painlevé property?, Phys. Rev. Lett.67
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