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Abstract

Varying-coefficient models are useful tools for analyzing longitudinal data. They
can effectively describe a relationship between predictors and responses repeatedly
measured. We consider the problem of selecting variables in the varying-coefficient
models via the adaptive elastic net regularization. Coefficients given as functions
are expressed by basis expansions, and then parameters involved in the model are
estimated by the penalized likelihood method using the coordinate descent algo-
rithm derived for solving the problem of sparse regularization. We examine the
effectiveness of our modeling procedure through Monte Carlo simulations and real
data analysis.

Key Words and Phrases: Basis expansion, Elastic net, Group lasso, Varying-
coefficient model.

1 Introduction

Longitudinal data analysis has been used in various fields such as bioscience, ergonomics

and meteorology. In longitudinal studies the data are measured repeatedly over time

for individual and they have possibly different time points, which makes it difficult to

directly apply the traditional multivariate analysis. Enormous works have contributed

to the development of longitudinal data analysis during the past few decades (see, e.g.

Diggle, 2002). In this article we focus on the problem of selecting variables which seem

to have a relation with a response which is repeatedly measured.

Several methods have been proposed for the analysis of longitudinal data. Laird

and Ware (1982) introduced random effects models and their estimation procedures and

Zeger and Diggle (1994) applied semiparametric models as the regression models for lon-

gitudinal data. Ramsay and Silverman (2005) considered treating longitudinal data as

smooth functions, and then established the Functional Data Analysis (FDA). On the other

hand, Hoover et al. (1998) generalized the semiparametric model and applied the time

varying-coefficient model. It is a special case of the varying-coefficient models (Hastie

and Tibshirani, 1993) and obtained for analyzing longitudinal data. They approached
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the modeling by use of kernel smoothing or smoothing splines with an L2-type penalty.

Huang et al. (2002) also used smoothing splines for time varying-coefficient models and

suggested a non-iterative solution for coefficient estimates. The effectiveness of varying

coefficient models are reported in several works (Fan and Zhang, 1999; Cai et al., 2000;

Eubank et al., 2004).

More recently, a class of sparse regularization has come to be used for the varying-

coefficient modeling. Sparse regularization including the lasso (Tibshirani, 1996), SCAD

(Fan and Li, 2001) and the elastic net (Zou and Hastie, 2005) simultaneously shrinks

parameters and selects variables which seem to be relevant to a response by estimating

coefficients of rest of the variables to be exactly zeros, and therefore it is one of the most

attractive methods in recent years. More details of sparse regularization can be seen in

Hastie et al. (2009). We can apply the sparse regularization to the varying-coefficient

models by expressing coefficient functions by basis expansions and then imposing L1-

type penalties to coefficient vectors. Since each variable has multiple parameters in this

case, Wang et al. (2007b) treated this problem as the grouped variable selection and

then applied the idea of the group lasso by Yuan and Lin (2006). They also selected the

transcriptional factors involved in gene regulation during a biological process. Wei et al.

(2011) applied the adaptive lasso penalty (Zou, 2006) and then estimated the model by

the coordinate descent algorithm (Friedman et al., 2007) which is derived for the sparse

regularization problem. Many other works concerning the varying-coefficient modeling

with the sparse regularization have been reported (Wang et al., 2008; Noh and Park,

2010; Xue and Qu, 2012; Wang et al., 2013).

In this paper we propose a method for estimating and selecting models simultaneously

by the varying-coefficient modeling along with the elastic net regularization by extending

the method by Wei et al. (2011). Especially we use an adaptive elastic net penalty

proposed by Zou and Zhang (2009). They combined the idea of the elastic net and the

adaptive lasso in the framework of the general linear model. The adaptive elastic net

regularization can select variables even if the number of variables is much larger than

the sample size and can take into account highly correlated predictors. Furthermore

its estimates has an preferable property called the “oracle property.” By applying the

elastic net regularization to the varying-coefficient model we can prevent its estimation

from giving unstable or degenerate results owing to both L1 and L2 terms of the penalty.

Coefficient functions of varying-coefficient models are expressed by basis expansions, and

then parameters are estimated by the penalized maximum likelihood method with the

help of the coordinate descent algorithm. In order to select tuning parameters involved

in the adaptive elastic net penalty we use a Bayesian model selection criterion derived for

evaluating the varying-coefficient model. The proposed modeling strategy is applied to

Monte Carlo simulations and clinical investigation data to investigate the effectiveness of

our method.
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This paper is organized as follows. In Section 2 we introduce a varying-coefficient

model which describe the relationship between multiple predictors and a response repeat-

edly measured. Section 3 provides a method for estimating the varying-coefficient model

with the adaptive elastic net regularization and selecting tuning parameters. Monte Carlo

simulations are conducted in Section 4 in order to evaluate the effectiveness of the proposed

modeling strategy and real data analysis are described in Section 5. Finally concluding

remarks are given in Section 6.

2 Varying-coefficient models

Suppose we have p sets of predictors Xk (k = 1, . . . , p) and a response Y , each of them

are repeatedly observed at possibly different time points. Denote i-th of n individuals at

j-th of ni time points of Xk and Y as xijk and yij respectively. The varying-coefficient

model (Hoover et al., 1998) that represents the relationship between Xks and Y is given

by

yij = β0(tij) + xij1β1(tij) + · · ·+ xijpβp(tij) + εij, (1)

where β0(·) is an intercept and β1(·), . . . , βp(·) are coefficients, both of which are given as

functions to be estimated. Moreover, εij are random noises whose vector εi = (εi1, . . . , εini
)′

are normally distributed with mean vector 0 and variance covariance matrix σ2Si with

unknown scalar σ2 and known ni × ni symmetric matrix Si.

We assume that coefficient functions βk(·) (k = 0, . . . , p) are expressed by basis ex-

pansions as follows;

βk(tij) =

Mk∑
m=1

γkmϕ
(k)
m (tij) = γ

′
kϕ

(k)(tij),

where γk = (γk1, . . . , γkMk
)′ are coefficient vectors and ϕ(k)(tij) = (ϕ

(k)
1 (tij), . . . , ϕ

(k)
Mk

(tij))
′

are basis functions. There are several basis functions available for ϕ(k)(t) such as wavelets

or radial basis functions. Here we apply cubic B-spline bases, whose details are re-

ferred to de Boor (2001); Imoto and Konishi (2003). Using this assumption and de-

noting yi = (yi1, . . . , yini
)′, Dik = diag(xi1k, . . . , xinik) (k = 1, . . . , p), Di0 = Ini

and

Φik = (ϕ(k)(ti1), . . . ,ϕ
(k)(tini

))′, the varying-coefficient model (1) can be rewritten as

yi =

p∑
k=0

DikΦikγk + εi, εi ∼ Nni
(0, σ2Si).

Then we have a probability density function

f(yi|θ) =
1

(2πσ2)ni/2|Si|1/2
exp

{
− 1

2σ2

(
yi −

p∑
k=0

DikΦikγk

)′

S−1
i

(
yi −

p∑
k=0

DikΦikγk

)}
,

(2)
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where we denote a vector of unknown parameters by θ = {γ0, . . . ,γp, σ
2}. After obtaining

an estimator of θ, denoted by θ̂, by the method described in the next section, we have a

statistical model f(yi|θ̂).

3 Estimation and evaluation via the sparse regular-

ization

Unknown parameters; coefficient vectors γk and variance parameter σ2, involved in the

varying coefficient model are estimated by the maximum penalized likelihood method

which maximizes a penalized log-likelihood function. The penalized log-likelihood func-

tion is given in the form of

lλ(θ) =
n∑

i=1

log f(yi|θ)− nλ

p∑
k=1

Pα(∥γk∥),

where Pα(·) is a penalty function, ∥ ·∥ is a standard L2 norm and λ > 0 is a regularization

parameter which controls the degree of the penalty. We impose the penalty composed

by a sum of penalty functions of L2 norms of the coefficient vectors γk instead of its

components separately. Then we can shrink all elements of the vector γk towards exactly

zeros when the corresponding predictor seems to be less relevant to the response. It is

exactly the idea of the group lasso by Yuan and Lin (2006). For the penalty function Pα

we use an adaptive elastic net penalty (Zou and Zhang, 2009) given by

Pα(θ) =
1

2
(1− α)θ2 + αŵk|θ| (3)

for all θ ∈ R, where α ∈ [0, 1] tunes the type of the penalty between the ridge (α = 0)

and the lasso (α = 1). Furthermore, ŵk > 0 is an adaptive weight which is given in the

form of ŵk = (
√
Mk∥γk∥)−β (∥γk∥ ̸= 0), = ∞ (∥γk∥ = 0) with a positive constant β,

where we use β = 1 in this paper.

We have difficulty in analytical expressions for the estimates of coefficients of regression

models via the L1-type regularization. Wang et al. (2007b) used a local quadratic ap-

proximation (Fan and Li, 2001) for the varying-coefficient modeling via the group SCAD

regularization, and Wei et al. (2011) applied a coordinate descent procedure (Friedman

et al., 2007) to the group adaptive lasso regularization. The coordinate descent method

has similar algorithm to the backfitting algorithm, used in the varying coefficient model-

ing (Hastie and Tibshirani, 1993), in that it updates coefficients of each variable in turn.

Using this method, we obtain updated values of k-th coefficients (k = 1, . . . , p) as

γ̂k =

(
n∑

i=1

Φ′
ikDikS

−1
i DikΦik + n(1− α)λσ̂2I

)−1 (
∥ζk∥ − nαλŵkσ̂

2
)
+

ζk
∥ζk∥

, (4)
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where

ζk =
n∑

i=1

Φ′
ikDikS

−1
i

(
yi −

p∑
l ̸=k

DilΦilγ̂ l

)

and z+ = max{z, 0} for z ∈ R. Both of two terms of the adaptive elastic net penalty

(3) directly have effects to the estimates (4) of the varying-coefficient model. The L1

term of the penalty shrinks some of coefficients γk towards zero vectors, while the L2

term prevents the degeneracy of the inverse, especially when there are few time points for

individual and a large number of basis functions. Although the first term in the inverse

matrix of (4) does not always degenerate even if n < p unlike the ordinal linear model,

the L2 term of the elastic net penalty provides stable estimates. Note that when k = 0

there is no regularization and therefore γ̂0 has the form of (4) with a generalized inverse

and λ = 0. The variance parameter is then estimated in the following form:

σ̂2 =
1∑
i ni

n∑
i=1

(
yi −

p∑
k=0

DikΦikγ̂k

)′

S−1
i

(
yi −

p∑
k=0

DikΦikγ̂k

)
. (5)

Since γ̂k and σ̂
2 depend on each other, they are updated until a convergence condition

is achieved. Consequently, the algorithm is given as follows:

1. Initialize parameters γ0,γ1, . . . , γp and σ2 by 1 for all elements.

2. For k = 0, 1 . . . , p, update γk by (4) in turn.

3. Update σ2 by (5).

4. Iterate 2 and 3 until convergence.

Thus the statistical model is obtained by substituting the estimators θ̂ = {γ̂0, . . . , γ̂p, σ̂
2}

given above into the probability density function (2), that is,

f(yi|θ̂) =
1

(2πσ̂2)ni/2|Si|1/2
exp

{
− 1

2σ̂2

(
yi −

p∑
k=0

DikΦikγ̂k

)′

S−1
i

(
yi −

p∑
k=0

DikΦikγ̂k

)}
.

The statistical model estimated by the adaptive elastic net regularization depends on

the regularization parameter, the tuning parameter and the number of basis functions,

therefore we need to decide these values objectively. The decision problem is regarded as a

model selection or evaluation problem. Although a cross validation is widely used for the

model selection problem, it often selects unstable estimates and has high computational

burden. Wang et al. (2007a) showed that GCV does not select the true model consistently

and that BIC consistently select the true model for the SCAD regularization. We apply
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the BIC for selecting the regularization parameter λ, tuning parameter α and the number

of basis functions Mk. Model selection criterion BIC has the form of

BIC = −2
n∑

i=1

log f(Y |θ̂) + edf log n

= − log(2πσ̂2)
n∑

i=1

ni −
n∑

i=1

log |Si| −
n∑

i=1

ni + edf log n, (6)

where edf is an effective degrees of freedom for the varying-coefficient model. Matsui

et al. (2013) derived an effective degrees of freedom for the varying coefficient models

estimated by the regularization method with the L2 penalty. Applying this result, the

effective degrees of freedom for the varying coefficient models estimated by the adaptive

elastic net regularization is given by

edf =
n∑

i=1

p∑
k=1

tr

{
DikΦik

(
n∑

i=1

Φ′
ikDikS

−1
i DikΦik + n(1− α)λσ̂2IMk

)−1

(
∥ζk∥ − nαλŵkσ̂

2
)
+

1

∥ζk∥
Φ′

ikDikS
−1
i

}
.

4 Simulation study

Monte Carlo simulations are conducted in order to examine the effectiveness of our

modeling procedure. We generated a repeated measurement data set {(xij, yij); i =

1, . . . , n, j = 1, . . . , ni}, where xij = (xij0, xij1, . . . , xijp)
′ with xij0 = 1, from a true model

yij = f(xij) + εij, f(xij) =

p∑
k=0

xijkβk(tij),

εij ∼ N(0, σ2), σ = s

{
max
i,j

f(xij)−min
i,j

f(xij)

}
,

where we set the number of predictors to be p = 50, which only first 30 predictors are

relevant to the response. We investigated whether the proposed model appropriately

select predictors which is relevant to the response for various values of sample sizes n and

variance parameters s.

First, time points tij were generated from an uniform distribution U(−0.5, 0.5) and

their numbers ni were uniformly generated as integer values between 4 and 15 for each

subject i. Then predictors Xk = Xk(t) were generated by following random numbers:

X1(t) ∼ U (t/10, 2 + t/10) , X7(t) ∼ N (3 exp(t/30), 1) ,

X13(t) ∼ N (t, 1) , X19(t) ∼ N (sin(2πt) + 2, 1) ,

X25(t) ∼ N (cos(2πt) + 2, 1)
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for k = 1, 7, 13, 19, 25 respectively. They are independent of any other variables. Other

variables for k ≤ 30, which are dependent on above variables, are generated from N((1 +

xik′(t))/(2 + xik′(t)), 1) where k′ = 6⌊(k − 1)/6⌋ + 1 with a floor function ⌊·⌋ for each

i. Remaining variables Xk(t) for k = 31, . . . , 50, independent of each other, are gener-

ated from a multivariate normal distribution with mean vector 0 and variance covariance

matrix cov(Xk(t), Xk(s)) = 4 exp(−|t− s|/5). Next, coefficient functions are set to be

β0(t) = exp(t3), β1(t) = 2 + 3 sin(πt/60),

β6(t) = 2 + 3 cos(πt/60), β11(t) = 2− 3 sin(π(t− 25)/15),

β16(t) = 2− 3 cos(π(t− 25)/15), β21(t) = 6− 0.2t2,

β26(t) = −4 + (20− t)3/2000.

Other coefficients for k ≤ 30 are obtained from

βk(t) = βk′′(t) + η
′ψ(t),

where k′′ = 5⌊(k − 1)/5⌋ + 1 and ψ(t) = (ψ1(t), . . . , ψ5(t))
′ is a vector of cubic B-spline

basis functions and η = (η1, . . . , η5)
′ is a random variable which follows multivariate

normal distribution with mean vector 0 and variance covariance matrix cov(ηi, ηj) =

4 exp(−|i − j|/5). The remaining coefficients are set to be βk(t) = 0 for k = 31, . . . , 50,

which suggest that the variables Xk for k = 31, . . . , 50 are irrelevant to the response.

We considered three patterns of sample size n = 15, 25, 50 and two patterns of variance

parameter s = 0.05, 0.1.

For the data set, we applied our varying-coefficient modeling procedure with cubic

B-spline basis, here we assumed that the number of basis functions Mk = 6 for all

k. Regularization parameters in the penalized log-likelihood function were selected by

BIC given in (6). In order to investigate the effectiveness of the proposed method,

we compared results of our modeling procedure with those of the adaptive group lasso.

We repeated this procedure for 100 times, and then obtained 100 mean squared errors

MSE =
∑

i

∑
j{f(xij) − ŷij}2/

∑
i ni, where ŷij is a predictive value of yij. Furthermore

we examined numbers of selected variables and proportions of variables correctly esti-

mated by zero and incorrectly estimated by zero so as to investigate the variable selection

performance.

Table 1 shows results of simulation studies. It contains averages and standard devia-

tions of 100 MSEs and selected regularization parameters and averages of tuning param-

eters. This table also provides numbers of selected variables and proportions that were

correctly and incorrectly estimated to be zeros. These results show that our method gives

fewer and stable (or competitive) MSEs than the adaptive lasso. The number of selected

variables of the adaptive elastic net are larger than that of the adaptive lasso. The pro-

portions of variables correctly estimated to be zeros are fewer than the adaptive lasso,
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Table 1: Result of simulation studies. Notations ”ave” and ”sd” represent average and
standard deviation respectively.

Adaptive elastic net Adaptive lasso
n 15 25 50 15 25 50

s = 0.05
ave(MSE)×10−2 0.91 2.43 2.60 1.66 3.49 3.37
sd(MSE)×10−2 0.76 1.27 1.01 1.60 1.55 1.26
ave(λ)×102 4.21 4.17 2.20 5.96 6.17 2.85
sd(λ)×102 1.48 1.17 0.35 3.45 2.47 1.47
ave(α) 0.85 0.80 0.80 — — —
select 32.42 24.18 25.55 23.10 9.19 12.49
correct 35.85 67.15 67.95 50.55 92.70 89.90
incorrect 38.03 44.63 39.53 59.30 77.57 68.43
s = 0.1

ave(MSE)×10−2 1.59 2.61 3.04 2.37 3.37 3.98
sd(MSE)×10−2 1.38 1.39 1.33 1.78 1.56 1.38
ave(λ)×102 3.97 4.04 2.25 5.70 5.26 3.50
sd(λ)×102 1.11 1.07 0.49 3.33 1.89 0.20
ave(α) 0.85 0.80 0.80 — — —
select 31.68 23.90 24.59 22.00 10.24 10.57
correct 38.95 66.60 71.55 55.90 89.10 94.05
incorrect 38.43 45.93 40.33 59.40 76.47 72.07

while those incorrectly estimated to be zeros are larger. It suggests that the adaptive

elastic net tends to select necessary variables than the adaptive lasso.

5 Real data example

We applied the proposed modeling strategy to the analysis of the multicenter AIDS cohort

study data, available on the R package timereg. The aim of the analysis is to investi-

gate the relationship between properties of the human who are infected with the Human

Immunodeficiency Virus (HIV) and the percentages of the CD4 cells in their blood. The

data set contains cigarette smoking status, age at HIV infection, pre-HIV infection CD4

cell percent and the CD4 cell percentage of each subject, observed at distinct time points

after HIV infection. Several researchers have applied the varying-coefficient modeling to

the analysis of this data (Fan and Zhang, 2000; Huang et al., 2004; Wang et al., 2008).

We applied the varying coefficient model and the group adaptive elastic net regularization

in order to investigate which combination of variables is important.

We represent the relationship of variables described above by the time varying-coefficient
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Table 2: Selected numbers of each variable for 100 bootstrap samples. ”k” denotes
the number of the variable. The upper side of the table indicates the result of original
variables, while the lower is of artificially appended variables.

k 1 2 3 4
select 0 0 6 100

k 5 6 7 8 9 10 11 12 13 14
select 0 0 0 22 22 4 0 0 6 4

model written by

yi(t) =

p∑
k=0

xikβk(t) + εi(t),

where predictors xik represent an overall intercept or baseline (BASE, k = 0), observed

time (TIME, k = 1), age at HIV infection (AGE, k = 2), cigarette smoking status

represented by 0 or 1 (SMOKE, k = 3), and pre-infection CD4 percent (PreCD4, k = 4) of

the i-th subject, respectively, response yi(t) is the CD4 percent of the i-th subject observed

at differing time points, βk(t) are time varying coefficients and εi(t) are the error functions.

We assumed that the variance covariance matrix of the vector (εi(ti1), . . . , εi(tini
))′ were

σ2I. In addition to these original predictors, we appended 10 artificial variables to the

predictor by the following method. First, we randomly selected a variable from Xk, k =

2, 3, 4 and then assigned a random sample of the selected variable without replacement

to a new variable. We repeated this process for 10 times and then treated them as Xk

(k = 5, . . . , 14).

Coefficient functions are supposed to be expressed by cubic B-spline basis expansions.

Then the model was fitted by the maximum penalized likelihood method with group

adaptive elastic net penalty, and it was evaluated by BIC. In order to avoid time consuming

process, we assumed that the number of basis functions was the same among variables and

the number of basis functions was set to be 6. We generated 100 sets of bootstrap samples

from the data, and then obtained 100 estimates of coefficient functions and numbers of

selected variables.

Table 2 shows sums of numbers of selected variables except for BASE (intercept) for

100 repetition. We can find that PreCD4 was most selected and other original predictors

were hardly selected. In addition, artificially appended variables were less selected. These

results show that PreCD4 strongly has an influence on CD4 cell percentage, while other

variables such as SMOKE and AGE have little relevance. Furthermore the proposed

method can also appropriately exclude variables which are truly unnecessary.

Estimated coefficients are shown in Figure 1. Solid lines are mean coefficient functions

for 100 bootstrap samples and dashed lines are pointwise 90 % confidence intervals. Figure
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Figure 1: Estimated coefficient functions for original variables. Top left: BASE, top right:
TIME, bottom left: AGE, bottom middle: SMOKE, bottom right: PreCD4.

1 suggests that the CD4 data have a trend that decreases with time in early time and then

increases gradually, and that PreCD4 has a positive influence on CD4 cell percentage, but

it gradually becomes weak with time. On the other hand, TIME, AGE and SMOKE seem

to have almost no effect on the CD4 percentage all the time since most coefficients of them

are estimated to be exactly zeros. It reveals that these three variables are irrelevant to

the CD4 cell percentage. These results are quite similar to those of Wang et al. (2008).

6 Concluding Remarks

In this article, we have applied the sparse regularization to varying-coefficient models in

order to select variables repeatedly measured at possibly different time points. We used

an adaptive elastic net penalty in the penalized likelihood method, and then parameters

involved in the model are estimated by the framework of the coordinate descent algorithm.

In order to select regularization parameters involved in the penalized likelihood method,

we derived an effective degrees of freedom for the varying coefficient model and then apply

a BIC-type criterion. Simulation studies suggest that our modeling strategy worked well

in the viewpoint of variable selection and prediction accuracy rather than the existing

method. Furthermore we applied it to the analysis of real data and showed that some of

information of the HIV patient seems to irrelevant to the CD4 cell percentage.

10



More recently, Şentürk and Müller (2010) proposed a new type of varying-coefficient

models which considers the relationship between a response and predictors with recent

time points. Future work will focus on applying the sparse regularization to such models

to investigate the time range that the predictors affect the response.
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