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MACHINES USING THE GBIC OF THE KERNEL

LOGISTIC REGRESSION

By

Ying Jiang∗ and Takashi Yanagawa†

Abstract

In this paper we propose a method of variable selection for support vector ma-
chines based on the approximate relationship between a support vector machine
and kernel logistic regression. First, we derive the generalized Bayesian informa-
tion criterion (GBIC) of a kernel logistic regression. Then we select variables that
minimize the GBIC, and propose to use them for a support vector machine. Fi-
nally, we apply the proposed method to identify peptides that could be related to
pancreatic cancer.

Key Words and Phrases: variable selection, support vector machines, kernel logistic regression,

generalized Bayesian information criterion, classification.

1. Introduction

The support vector machine is a two-class classification method developed by Vap-
nik (1995) as a machine learning method. It uses the idea of kernel substitution to classify
data in a high-dimensional feature space, and has demonstrated excellent performance in
fields as diverse as handwritten digit recognition (Scholkopf et al. (1997)), object recog-
nition (Pontil and Verri (1998)), text categorization (Joachims (1999)), speaker identi-
fication (Wan and Campbell (2000)), and face recognition (Guo et al. (2000)). These
authors applied the support vector machine to predict group labels using all available
features in the data.

In recent years, applications of support vector machines with selected features in
data are increasing (see, for example Weston et al. (2000)). One of the popular selection
methods for linear support vector machines is Recursive Feature Elimination (RFE) (
Guyon et al. (2002)). In RFE, one starts by training support vector machine using
all features, then eliminate the feature with the smallest square weights in the result
classifier, and repeat the same procedure with the remaining features until the set of
selected features is small enough. Krupka et al. (2008) proposed a Meta-Feature based
Predictive Feature Selection (MF-PFS) to improve the RFE.

Feature selection algorithms for support vector machines discussed above are based
on optimization of machine learning. We consider the feature selection problem in this
paper from statistical point of view, and call it the variable selection instead of feature
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selection. In statistical science, information criteria such as AIC and BIC are standard
tools for variable selection. However, the support vector machine is not a stochastic
classifier so it is difficult to construct those criteria directly. In this paper we develop
a variable selection method suitable for support vector machine based on a relationship
between support vector machine and kernel logistic regression discovered previously
by Zhu and Hastie (2005). Kobayashi and Komaki (2006) used the same relationship to
choose the tuning parameters of a support vector machine. For the information criterion
of kernel logistic regression, Ando et al. (2004) developed a method of choosing a subset
of training data by means of the BIC.

The remainder of this paper is organized as follows. In Section 2, we review the
theory of support vector machines and kernel logistic regression. In Section 3, we derive
the generalized Bayesian information criterion (GBIC) (Konishi et al. (2004)) for ker-
nel logistic regression, and propose a new variable selection method for support vector
machines. Finally, in Section 4, we apply the proposed method for identifying peptides
that could be related to pancreatic cancer.

2. Support Vector Machines and Kernel Logistic Regression

Let D be the set of training data {(xi, yi)}ni=1, where xi ∈ Rp and yi ∈ {−1, 1}.
Function K(x,xi) : Rp × Rp → R, which assigns a weight to xi based on its distance
from x, is called the kernel function. For any kernel function K which is symmetric and
positive-semi definite, let Hk be the reproducing kernel Hilbert space defined by

Hk
def
=

{
f
∣∣∣f(x) = n∑

i=0

αiK(x,xi), K(x,x0) = 1, αi ∈ R

}
,

where norm ∥ · ∥Hk
is given by

∥ f ∥2Hk
=

n∑
i=0

n∑
j=0

αiαjK(xi,xj),

for

f(x) =
n∑

i=0

αiK(x,xi). (1)

Hastie et al. (2001) showed that the support vector machine was equivalent to min-
imize the following equation with respect to f ∈ Hk:

1

n

n∑
i=1

[1− yif(xi)]+ +
λ

2
∥ f ∥2Hk

,

where λ(> 0) is a tuning parameter, and [t]+ is defined as [t]+ = max(0, t).
Now suppose that yi ∈ {−1, 1} is an observed value of random variable Yi, and

that its conditional distribution given xi is p(xi) = P (Yi = 1|xi). For the f defined in
(1), put

log
p(x)

1− p(x)
= f(x).
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Then the log likelihood function of yi given xi (i = 1, 2, · · · , n) is

ℓ = −
n∑

i=1

log [1 + exp(−yif(xi))] . (2)

A negative penalized log likelihood function is

ℓλ =
1

n

n∑
i=1

log [1 + exp(−yif(xi))] +
λ

2
∥ f ∥2Hk

.

The problem of minimizing ℓλ with respect to f ∈ Hk is called the Kernel Logistic
Regression (KLR).

Zhu and Hastie (2005) found that log[1+exp(−yf)] approximates [1−yf ]+ well. In
this paper we develop a method of variable selection based on the information criterion
for the KLR and propose to use the selected variables for a support vector machine.

Now, for the f given in (1), the negative penalized log likelihood function ℓλ is

ℓλ(α) =
1

n

n∑
i=1

log

1 + exp

−yi

n∑
j=0

αjK(xi,xj)

+
λ

2

n∑
i=0

n∑
j=0

αiαjK(xi,xj), (3)

where α = (α0, α1, · · · , αn)
′. Thus, the KLR problem reduces to finding the α = α̂

that minimizes ℓλ(α).
Let K be an n× n matrix with (i, j)-th element Kij = K(xi,xj), and put

Φ =
(
1n K

)
and R =

(
1 1′

n

1n K

)
. (4)

Let H be an n× n diagonal matrix whose ith element is p(xi)(1− p(xi)). If the matrix
Φ′HΦ + nλR is nonsingular, as seen in Ando et al. (2004), it follows that the solution
α̂ of the KLR problem (3) is also a solution of the following iteration:

αnew = (Φ′HΦ+ nλR)−1Φ′H(Φαold +H−1δ). (5)

Here δ is an n-dimensional vector whose ith element is (yi + 1)/2− p(xi).

3. Variable Selection

3.1. The generalized Bayesian information criterion for KLR

We use a radial basis function for K, i.e.,

K(x,y) = exp(−σ ∥ x− y ∥2). (6)

σ is an unknown positive real value called the kernel parameter. Note that the solution
α̂ of the KLR problem (3) cannot be obtained unless λ and σ are specified.

Let xi be the ith component of x ∈ Rp. The variable selection problem can
be phrased as follows: choose a subset {xj1 , · · · , xjm} from {x1, · · · , xp}, or equiva-
lently a subset of indices {j1, · · · , jm} from {1, 2, · · · , p}, such that the α̂ obtained from
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(xj1i, · · · , xjmi), i = 1, · · · , n is just as efficient as the α̂ obtained from (x1i, · · · , xpi),
i = 1, · · · , n. We explore the generalized Bayesian information criterion for variable
selection.

Let Λ = {λ1, · · · , λn1} and Σ = {σ1, · · · , σn2} be sets of candidate tuning param-
eters and kernel parameters respectively. Let Sc ⊂ {1, 2, · · · , p} be a set of candidates
of variables to be selected. There are 2p − 1 possible subsets Sc for each λ ∈ Λ and
σ ∈ Σ. We refer to the combinations of λ ∈ Λ, σ ∈ Σ and Sc as models. There are
m = n1n2(2

p − 1) models altogether. After placing them in some order, we denote the
jth combination model by Mj .

The posterior probability P (Mj |D) of modelMj given observed dataD={(xi,yi)}ni=1

may be represented by

P (Mj |D) =
P ({yi}ni=1|Mj , {xi}ni=1)P (Mj |{xi}ni=1)

m∑
k=1

P ({yi}ni=1|Mk, {xi}ni=1)P (Mk|{xi}ni=1)

, j = 1, · · · ,m. (7)

The model that attains maxj=1,··· ,m P (Mj |D) is called the optimum model. When we
suppose P (Mj |{xi}ni=1) = 1/m, it follows from (7) that the optimum model is given by
the model Mj that minimizes the following GBIC.

GBIC = −2 logP ({yi}ni=1|Mj , {xi}ni=1) . (8)

GBIC is called the generalized Bayesian information criterion (Konishi et al. (2004)).
Let π (α|Mj , {xi}ni=1) be the prior density for the (n + 1)-dimensional parameter

vector α in KLR problem (3). We consider the following singular multivariate normal
density for π(·):

π (α|Mj , {xi}ni=1) = (2π)−r/2(nλ)r/2|R|1/2+ exp

(
−nλ

2
α′Rα

)
. (9)

Here R is defined by equation (4), and |R|+ is the product of r nonzero eigenvalues of
R. Then we have the following theorem.

Theorem 3.1. Suppose that the prior density of α is given by equation (9). Then
the GBIC is represented as follows:

GBIC = 2nℓλ(α̂)− (n+ 1− r) log(2π/n)− r log λ− log |R|+ + log |J(α̂)|,

where J(α̂) = Φ′HΦ/n+ λR．

Proof. It holds that

P ({yi}ni=1|Mj , {xi}ni=1) =

∫
P ({yi}ni=1|α,Mj , {xi}ni=1)π (α|Mj , {xi}ni=1) dα, (10)

where P ({yi}ni=1|α,Mj , {xi}ni=1) is the conditional likelihood function given α, Mj and
{xi}ni=1 that is identical to eℓ where ℓ is the log likelihood function given in (2) under
Mj . Put

τ(α|Mj , {xi}ni=1) =
1

n
log [P ({yi}ni=1|α,Mj , {xi}ni=1)π (α|Mj , {xi}ni=1)] .
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Then from (9), we have

τ(α|Mj , {xi}ni=1) =
1

n
logP ({yi}ni=1|α,Mj , {xi}ni=1)

+
1

n

(
−r

2
log 2π +

r

2
log nλ+

1

2
log |R|+ − nλ

2
α′Rα

)
=

1

n
ℓ− λ

2

n∑
i=0

n∑
j=0

αiαjK(xi,xj)−
r

2n
log 2π +

r

2n
log nλ

+
1

2n
log |R|+

= −ℓλ(α)− r

2n
log(2π/n) +

r

2n
log λ+

1

2n
log |R|+, (11)

where ℓλ(α) is the negative penalized log likelihood function given in (3) and λ is
the parameter specified by Mj . This equation shows that α̂, the solution of the KLR
problem (3), maximizes τ(α|Mj , {xi}ni=1). Thus, by applying the Laplace approximation
for integrals developed by Davison (1986) and Tierney and Kadane (1986), we have∫

P ({yi}ni=1|α,Mj , {xi}ni=1)π (α|Mj , {xi}ni=1) dα

=

∫
exp(nτ(α|Mj , {xi}ni=1))dα

≈ (2π)(n+1)/2

n(n+1)/2 | J(α̂) |1/2
exp{nτ(α̂|Mj , {xi}ni=1)}, (12)

where

J(α̂) = −∂2τ(α|Mj , {xi}ni=1)

∂α∂α′

∣∣∣∣
α̂
.

Therefore, from (8), (10), (11) and (12) we have

GBIC = −2

{
n+ 1

2
log 2π − n+ 1

2
log n− 1

2
log |J(α̂)|

}
− 2nτ(α|Mj , {xi}ni=1)

= −(n+ 1) log(2π/n) + log |J(α̂)|+ 2nℓλ(α̂) + r log(2π/n)− r log λ− log |R|+
= 2nℓλ(α̂)− (n+ 1− r) log(2π/n)− r log λ− log |R|+ + log |J(α̂)|.

Now we compute J(α̂). It follows from (11) that the second derivative of τ(α|Mj ,
{xi}ni=1) with respect to α is identical to the second derivative of the negative penalized
log likelihood function ℓλ(α) with respect to α, which is involved implicitly in the
iteration algorithm given in (5). Thus, J(α) = Φ′HΦ/n+ λR, and J(α̂) is the value of
J(α) at α = α̂. This completes the proof of the theorem.

3.2. Variable Selection for Support Vector Machines

Note that the variable selection method does not work if Φ′HΦ+nλR degenerates.
Also note that if σ is specified inappropriately, many values ofK(x̃i, x̃t) will be extremely
close to zero or one, making Φ′HΦ + nλR degenerates. Putting x̃i = (xj1i, · · · , xjmi)

′,
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z1 =∥ x̃1 − x̃2 ∥2, z2 =∥ x̃1 − x̃3 ∥2, · · · , zN =∥ x̃n − x̃n−1 ∥2 (N = n(n − 1)/2),

zm = min{zr}Nr=1, zM = max{zr}Nr=1, and σ0 = N
/∑N

r=1 zr, we may show that

exp

(
−zM
zm

a

)
≤ K(x̃i, x̃t) ≤ exp

(
− zm
zM

a

)
for a = σ/σ0 and any x̃i, x̃t. Thus, by selecting a approprately, we can always obtain
K(x̃i, x̃t) values that are far from zero and one. From these considerations, we propose
the following variable selection method for the support vector machine.

First, decide Λ∗, a subset of Λ, such that inverse matrix of Φ′HΦ+ nλR exists for
any λ ∈ Λ∗.

Second, set the class Σ as Σ∗ = {aσ0, 5aσ0, 10aσ0, 50aσ0, 100aσ0} for σ0 =

N
/∑N

r=1 zr and for some selected candidates of a.

Third, compute the GBIC for all elements of Λ∗×Σ∗×Sc, where Sc ⊂ {1, 2, · · · , p}.
Fourth, denoting by S∗

c the Sc that attains the minimum GBIC, and employ vari-
ables whose suffixes belong to S∗

c as selected variables for the support vector machine.

Fifth, compute the misclassification error rate of the support vector machine with
those variables by using leave-one-out cross validation for several combinations of λ and
σ, and select λ and σ that attain the minimum misclassification error rate. We have no
ideas about the candidates of λ and σ, but selected λ ∈ {0.01, 0.05, 0.1, 0.5, 1, 5, 10}
and σ ∈ {0.1, 0.2, 0.4, 0.6, 0.8, 1} by trial and errors in the application below.

Finally, apply the support vector machine with the selected variables and the se-
lected parameters λ, σ to new data.

4. Application

Prostate Stem Cell Antigen (PSCA) is found mainly on the surfaces of prostate
cancer cells. Recently it has been shown that PSCA can be also found in pancreatic
cancer. PSCA consists of 123 amino acids, whose fragments are called peptides. In
order to study which peptides might be related to pancreatic cancer, the antibodies for
58 peptides were measured in 40 patients with pancreatic cancer and 29 patients with-
out pancreatic cancer. Rather than discriminating between patients with and without
pancreatic cancer using all peptides, it was considered more important to discriminate
between patients using just a few peptides that are strongly related to pancreatic can-
cer. This motivated us to develop the method of variable selection for support vector
machines discussed in the present paper.

We simply denote the names“ X1”,“ X2”, · · · ,“ X58” for the measurements
of antipeptide antibodies of 58 peptides. We anticipated that there were less than
five peptides which would be strongly related to pancreatic cancer and we first select 10
candidate peptides from 58 peptides by applying the Lepage test (Lepage (1971)), which
is a two-sample non-parametric test for detecting the location and scale differences. We
picked up top 10 peptides from the largest inspecting the values of the test statistics.
The p-values of these peptides were all less than or equal to 0.0001.

We applied the variable selection method developed in preceding sections to the
data with those 10 variables, thus p = 10 in this application. Candidate of Λ we consid-
ered was Λ∗ = {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000, 5000, 10000, 50000}
and of Σ was the intersection of Σ∗

a = {aσ0, 5aσ0, 10aσ0, 50aσ0, 100aσ0} for a ∈ {0.001,
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0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50}. We need not compute the GBIC for all com-
binations of λ ∈ Λ∗ and σ ∈ Σ∗. The subsets that give smaller values of the GBIC may
be selected by trial and errors. Those subsets that we selected are given in Table 1.

Table 1: Λ∗ and a used in the computation

number of variables Λ∗

≤5 {50, 100, 500, 1000, 5000, 10000, 50000}
6, 7, 8, 9 {0.5, 1, 5, 10, 50, 100, 500}

10 {0.005, 0.01, 0.05, 0.1, 0.5, 1, 5}

number of variables a
1 50
2 1

3, 4, 5 0.01
≥6 0.001

Figure 1 plots the minimum GBIC and its value for each number of variables. Those
values were computed according to the method described in the text. The figure shows
that the smallest value among those values of minimum GBIC, i.e. GBIC = −36.65, is
attained when the number of variables is five. This value is attained when λ = 500 and
σ = 0.00515, and by {“ X2”,“ X14”,“ X21”,“ X23”,“ X29”}.

Using these five variables, we next computed the misclassification rates of the sup-
port vector machine to decide the optimum λ and σ. As mentioned above, we employed
the leave-one-out cross validation technique for combinations of λ ∈ {0.01, 0.05, 0.1, 0.5,
1, 5, 10} and σ ∈ {0.1, 0.2, 0.4, 0.6, 0.8, 1} and obtained the optimum value as
λ = 1, σ = 0.4. Table 2 shows the result of classification obtained by leave-one-
out cross validation using those optimum values, giving the misclassification error rate
0.217. For the sake of comparison we applied the support vector machine to the same
data using all 58 variables. Table 3 shows the result that gives the minimum mis-
classification rates obtained by leave-one-out cross validation over the combinations of
λ ∈ {0.01, 0.05, 0.1, 0.5, 1, 5, 10} and σ ∈ {0.1, 0.2, 0.4, 0.6, 0.8, 1}, the minimum
rate is attained when λ = 0.1 and σ = 0.1. From the table the error rate is computed to
be 0.232. This shows that we may achieve better discrimination with selected variables
than we do using all variables, provided variables are selected appropriately.

Next we apply the RFE, the method of selecting variables for linear support vector
machines discussed in the introduction of this paper, to the same data. The RFE ranks
all variables in descending order based on some criterion. However, no method for
deciding the number of variables is suggested in Guyon et al. (2002). So we performed
the leave-one-out cross validation using the same sets for λ and σ as above and evaluated
the minimum misclassification error rates of the combinations of variables of size two,
three, · · · by combining the top rank and the second top rank when the size is two, the
top rank, the second top rank and the third top rank when the size is three, and so
on. Figure 2 plots those minimum misclassification error rates obtained by this method
when the size of combination is 2, 3, · · · , 10. The minimum misclassification rate when
the size of variable is one is also plotted in the figure. The figure shows that the smallest
error rate is 0.246 attained by one variable {“X30”}, and also by six variables {“X30”,
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Figure 1: The smallest GBIC value obtained for each number of variables.

Table 2: The results of leave-one-out cross validation of the support vector machine
with selected variables

Results of discrimination
non-cancer pancreatic cancer total

Data non-cancer 19 10 29
Label pancreatic cancer 5 35 40

total 24 45 69

Table 3: The results of leave-one-out cross validation of the support vector machine
with all variables

Results of discrimination
non-cancer pancreatic cancer total

Data non-cancer 19 10 29
Label pancreatic cancer 6 34 40

total 25 44 69
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“X39”,“X24”,“X8”,“X41”,“X53”}. The smallest error rate (0.246) is larger than
the smallest misclassification error rate (0.217) by our method.
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0.246
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0.246

Figure 2: The minimum misclassification error rate of leave-one-out cross validation for
each number of variables.

The variables selected by the proposed method and the RFE are exclusive, in
particular, the variables selected by our method do not include“X30”, the top ranked
variable selected by the RFE. The reason might be considered as follows. It is well
known in statistics that the combination of the most effective and the second most
effective variables is not necessary efficient for discrimination, in particular, if they are
strongly correlated; combination of two weakly correlated variables could often provide
better discrimination. Little biological knowledge is available yet on which peptides are
related to pancreatic cancer, and it is not easy to give any conclusive results, but we
believe that the selection of variables by statistical methods based on Bayes approach
such as the one developed in the present paper would provide better results than those
methods such as RFE developed in machine learning.
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